首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 426 毫秒
1.
针对某些原发性肿瘤能够抑制远处转移性肿瘤快速生长的特性,建立转移性肿瘤附近血管内皮细胞迁移运动的二维、三维离散数学模型,对原发性肿瘤分泌的Angiostatin、转移性肿瘤分泌的促血管生成因子(TAF)共同作用下转移性肿瘤内外微血管网的生成过程进行数值模拟.结果表明,原发性肿瘤分泌的血管抑素对转移性肿瘤内外微血管网的生成速度、成熟度及血管分支数量均有明显的抑制作用;可以降低转移性肿瘤的血管化程度,有效抑制转移性肿瘤的快速生长,达到治疗肿瘤的目的;为肿瘤抗血管生成治疗提供有益信息.  相似文献   

2.
含自由液面的汇流旋涡抽吸演变中存在多相耦合、物质传输、能量剧烈交换等物理过程,其中所涉及的多相流体耦合输运机理是具有高度非线性特征的复杂动力学问题,多相黏滞耦合输运动力学建模与数值求解具有较高难度.针对上述问题,提出一种含自由液面的汇流旋涡多相耦合输运建模与求解方法.基于水平集-流体体积耦合(CLSVOF)计算方法,结合连续表面张力模型和可实现(k-ε)湍流模型,建立含自由液面的汇流旋涡多相耦合输运动力学模型;利用一种有效的体积修正方案来计算高速旋转多相流,保证流场质量守恒和无散度的速度场;结合相间耦合求解策略对多相流体分布与多相界面进行精确追踪.基于旋流场多特征物理变量,得到多相耦合界面动态演变与跨尺度涡团输运规律,揭示了多相耦合输运过程与压力脉动特性之间的相互作用机理.研究结果表明:多相耦合输运过程是流体介质过渡的关键状态,旋涡微团受到不同时空扰动模式在界面处形成层层螺纹波形;旋涡多相耦合输运过程随着水口尺度增大而增强,且耦合能量激波引起非线性压力脉动现象.研究结果可为旋涡输运机理、涡团跨尺度求解、流型追踪等方面的研究提供有益借鉴.  相似文献   

3.
激光诱导间质肿瘤热疗的数值模拟和实验研究   总被引:1,自引:0,他引:1  
本文在考虑生物组织物性动态变化的情况下建立了激光诱导间质肿瘤热疗(LITT)的物理数学模型,采用MonteCarlo方法数值模拟了LITT中激光能量在生物组织内的传输过程,基于Pennes生物传热方程和Arrhenius方程数值求解了组织内的温度分布和热损伤体积的变化,分析了热物性及血液灌注率的动态变化对LITT过程的影响,并与相应的离体实验结果进行了对比。数值模拟结果表明,组织的热物性及血液灌注率的动态变化对于热损伤体积的变化具有重要的影响。因此在激光诱导间质肿瘤热疗的数值模拟中应该考虑热物性及血液灌注率的动态变化以期为临床治疗方案的制定提供更为准确的依据。  相似文献   

4.
为了研究涡流二极管内空化现象的机理特性及对其性能的影响,我们假设流体为气液混相均质,并考虑不可凝结气相,采用基于组分输运方程,求解了涡流二极管全流道内气液混相均质流的雷诺平均N-S方程以及气相组分输运方程。数值计算结果显示了空化形成时涡流二极管入口、出口及旋流腔内的流场形态,研究表明:涡流二极管空化现象主要发生在流体切向进入时旋流腔和中心管的中心部位;空化流是由于液体在中心旋流场低压条件下汽化,同时不可凝结气体由于亨利定律在旋转流场形成的压力梯度下而发生的输运效应综合形成的;空化流由于强旋涡的原因对涡流二极管的性能产生明显的影响。上述结论对涡流二极管的设计及其指导工程应用具有重要的价值。  相似文献   

5.
基于乳腺解剖学结构和生理学特征,建立了适合应用于正常和嵌合肿瘤乳腺三维热传递的分析模型.该模型综合考虑了乳腺代谢产热、血液灌注和动静脉血管与乳腺组织之间的热交换等因素对温度场的影响.数值研究了正常和嵌合肿瘤乳腺的温度分布特征,着重分析代谢产热、血液灌注率、乳腺肿瘤的大小、位置与数目以及空气对流系数、环境温度等因素对乳腺温度分布的影响.结果表明:血液灌注率、代谢产热、乳腺肿瘤的大小、位置与数目对乳腺温度分布特征的影响明显;环境条件对嵌含肿瘤乳腺的体表温度分布影响较大.研究结果将有助于指导乳腺红外热图像的实验并为其定性分析提供重要的参考.  相似文献   

6.
在微流控系统中,稳定、可控的柔性气-液界面可实现声流体颗粒富集、微纳操作、快速气-液反应等各种实际物理和生化应用.微流道内气-液界面的抗流体剪切能力对于增强微尺度下气-液界面的可控性具有十分重要的意义.为此,文章研究了具有高稳定性、高可控性、可阵列化的微尺度驻停气泡现象.利用嵌入局部裂隙的微流道以及与之平行的气体流道,可对驻停气泡的生成和形态进行有效调节,并利用其可控的气-液界面实现多种功能化应用.在此基础上,文章进一步研究柔性可控气-液界面的抗流体剪切能力,对形态变化中的气-液界面受力进行分析,利用仿真和实验手段研究不同状态下气-液界面的形状特征,研究不同的液体驱动压力、裂隙尺寸以及裂隙形状对气-液界面抗剪切能力的影响,并将界面的曲率半径作为气泡驻留与否的判定依据.文章对驻停气泡柔性气-液界面抗流体剪切能力的研究有助于优化其控制方法,增强其控制稳定性并拓展其潜在应用场合.   相似文献   

7.
何昱辰  刘向军 《物理学报》2015,64(19):196601-196601
分子动力学模拟是研究纳米流体的输运特性的重要手段, 但计算量庞大. 为研究能体现流动传热过程的大体系纳米流体的输运特性, 本文对基液采用连续介质假设, 将基液的势能拟合在纳米团簇的势能中, 大幅度减小了计算量, 使得大体系输运特性的模拟成为可能, 且模拟结果与多组实验结果吻合较好. 采用此方法模拟研究了速度梯度剪切对Cu-H2O纳米流体颗粒聚集过程和聚集特性的影响, 进而对Cu-H2O纳米流体在流动传热过程中的热导率和黏度进行了模拟计算, 定量揭示了宏观流动传热过程中不同的速度梯度、速度、平均温度和温度梯度对于Cu-H2O纳米流体热导率和黏度的影响.  相似文献   

8.
本文结合可视化实验技术对直管中粘弹性流体振荡输运作了全面观察和分析,重点探讨振荡气液两相流中的界面现象和输运机理,考察不同管径和流体粘弹性对输运形态的影响。  相似文献   

9.
流体在气液临界点附近热平衡重新建立的时间大大缩短,这主要依赖于“活塞效应”对能量输运的加速作用,它本质上是一种热声波动作用。本文从基本控制方程组出发,通过数值求解流体动力学控制方程组,对声学时间尺度上超临界CO2中的动量和能量输运过程展开研究,结果表明流体温度空间分布不遵循经典傅里叶导热模型,其随时间的演化过程呈现明显...  相似文献   

10.
李冬梅  袁晓娟  周加强 《物理学报》2013,62(16):167202-167202
基于扩展的Su-Schrieffer-Heeger紧束缚模型, 利用非绝热动力学方法研究了链内无序效应对共轭聚合物中极化子输运机制的影响. 研究发现, 极化子的输运由外加电场和链内无序效应共同作用的结果所决定. 在一般情况下, 链内无序效应不利于极化子的输运, 但随着电场强度的增大, 无序对极化子输运的影响减小. 关键词: 共轭聚合物 极化子输运 链内无序  相似文献   

11.
Mast cells (MCs) play an important role in the immune system. Through connective tissues, mechanical stimuli activate intracellular calcium signaling pathways, induce a variety of mediators including leukotriene C$_4$(LTC$_4$) release, and affect MCs' microenvironment. This paper focuses on MCs' intracellular calcium dynamics and LTC$_4$ release responding to mechanical stimuli, explores signaling pathways in MCs and the effect of interstitial fluid flow on the transport of biological messengers and feedback in the MCs network. We use a mathematical model to show that (i) mechanical stimuli including shear stress induced by interstitial fluid flow can activate mechano-sensitive (MS) ion channels on MCs' membrane and allow Ca$^{2+}$ entry, which increases intracellular Ca$^{2+}$ concentration and leads to LTC$_4$ release; (ii) LTC$_4$ in the extracellular space (ECS) acts on surface cysteinyl leukotriene receptors (LTC$_4$R) on adjacent cells, leading to Ca$^{2+}$ influx through Ca$_{2+}$ release-activated Ca$^{2+}$ (CRAC) channels. An elevated intracellular Ca$^{2+}$ concentration further stimulates LTC$_4$ release and creates a positive feedback in the MCs network. The findings of this study may facilitate our understanding of the mechanotransduction process in MCs induced by mechanical stimuli, contribute to understanding of interstitial flow-related mechanobiology in MCs network, and provide a methodology for quantitatively analyzing physical treatment methods including acupuncture and massage in traditional Chinese medicine (TCM).  相似文献   

12.
《Physica A》2006,369(2):309-317
The effect of the shape factor on the electrokinetic response of pressure-driven liquid flow through slot-like capillaries is analyzed in this work. The electrokinetic response is found by first solving for the electrical potential using the Poisson–Boltzmann equation, and then using it as an input to construct an external force term in the Navier–Stokes equation. It is found that flow properties are significantly modified for small pore sizes with hydraulic radius in the range of microns and submicrons, according to the properties of the electrolyte solution. The modified flow rate in the presence of such electrokinetic effects can be less than 50% of the predictions expected with conventional flow models such as Darcy's equation. Apparent viscosities larger than expected are calculated using the reduced flow. Actual values are dependent on the capillary dimensions, pressure gradient, solid-surface conductivity, and properties of the electrolyte fluid. For a rectangular capillary cross-sectional geometry the apparent viscosity and friction coefficients values decrease with the shape factor in a nontrivial way. These results are relevant for the modelling of certain porous formations of interest to the oil industry.  相似文献   

13.
Metabolic imaging with hyperpolarized [1-13C]-pyruvate can rapidly probe tissue metabolic profiles in vivo and has been shown to provide cancer imaging biomarkers for tumor detection, progression, and response to therapy. This technique uses a bolus injection followed by imaging within 1–2 minutes. The observed metabolites include vascular components and their generation is also influenced by cellular transport. These factors complicate image interpretation, especially since [1-13C]lactate, a metabolic product that is a biomarker of cancer, is also produced by red blood cells. It would be valuable to understand the distribution of metabolites between the vasculature, interstitial space, and intracellular compartments. The purpose of this study was to better understand this compartmentalization by using a perfusion and diffusion-sensitive stimulated-echo acquisition mode (STEAM) MRSI acquisition method tailored to hyperpolarized substrates. Our results in mouse models showed that among metabolites, the injected substrate 13C-pyruvate had the largest vascular fraction overall while 13C-alanine had the smallest vascular fraction. We observed a larger vascular fraction of pyruvate and lactate in the kidneys and liver when compared to back muscle and prostate tumor tissue. Our data suggests that 13C-lactate in prostate tumor tissue voxels was the most abundant labeled metabolite intracellularly. This was shown in STEAM images that highlighted abnormal cancer cell metabolism and suppressed vascular 13C metabolite signals.  相似文献   

14.
We report the effect of interstitial fluid on the extent of segregation by imaging the pile that results after bidisperse color-coded particles are poured into a silo. Segregation is sharply reduced and preferential clumping of small particles is observed when a small volume fraction of fluid V(f) is added. We find that viscous forces in addition to capillary forces have an important effect on the extent of segregation s and the angle of repose straight theta. We show that the sharp initial change and the subsequent saturation in s and straight theta occurs over similar V(f). We also find that a transition back to segregation can occur when the particles are completely immersed in a fluid at low viscosities.  相似文献   

15.
The present prospective theoretical investigation deals with analysis of the peristaltic-ciliary transport of a developing embryo within the fallopian tubal fluid in the human fallopian tube. A mathematical model of peristalsis-cilia induced flow of viscoelastic fluid characterized by the third grade fluid model within the fallopian tubal fluid in a finite two dimensional narrow tube is developed. Non-linear partial differential equation resulting from the modelling of the proposed model is solved using perturbation method. Flow variables like axial and radial velocities, appropriate residue time over tube length, pressure difference over wavelength and stream function are analyzed for embedded parameters and constants. Salient features of the pumping characteristics and trapping phenomenon are discussed in detail. The analysis showed that embedded parameters and constants have opposite effects on axial velocity and appropriate residue time over tube length. Moreover, a comparison of the peristaltic flow with the peristaltic-ciliary flow and the third grade fluid with the linearly viscous fluid is made as a special case. The relevance of the current results to the transport of a developing embryo within the fallopian tubal fluid is also explored. It reveals that, third grade fluid instead of the linearly viscous fluid and the inclusion of cilia along with peristalsis help to complete the required mitotic divisions while transporting the developing embryo within the fallopian tubal fluid in the human fallopian tube.  相似文献   

16.
Conventional hyperthermia enhances tumor response to radiotherapy through thermal cell inactivation and vascular shut-down, whereas mild hyperthermia potentiates the effect of radiotherapy by improving tumor oxygenation. The work reported here was aimed at investigating whether 31P-magnetic resonance spectroscopy (31P-MRS) measurements of tumor bioenergetic status; i.e., the (PCr + NTPbeta)/Pi resonance ratio, and/or the spin lattice relaxation times, T1s, of the Pi and NTPbeta resonances can be used to distinguish between the effects of conventional and mild hyperthermia. BEX-t human melanoma xenografts were treated at 43.0 degrees C for 15 or 60 min, and bioenergetic status and T1s were measured as function-of-time after treatment. Hyperthermia-induced effects on tumor blood flow was measured by using the 86Rb uptake method. The morphology of the capillary network in treated and untreated tumors was studied by histologic examination. Tumors treated for 15 min showed increased blood flow and dilated capillaries, whereas tumors treated for 60 min showed decreased blood flow and capillary occlusions; i.e., 43.0 degrees C for 15 min was a treatment consistent with mild hyperthermia and 43.0 degrees C for 60 min was consistent with conventional hyperthermia treatment of BEX-t tumors. Bioenergetic status increased after treatment at 43.0 degrees C for 15 min, and decreased after treatment at 43.0 degrees C for 60 min, similar to the blood flow. Likewise, the T1 of the Pi resonance increased after treatment at 43.0 degrees C for 15 min, and decreased after treatment at 43.0 degrees C for 60 min. The T1 of the NTPbeta resonance showed a similar change as the T1 of the Pi resonance, but less pronounced. Consequently, 31P-MRS measurements of tumor bioenergetic status and the T1 of the Pi resonance may perhaps be utilized to distinguish between vascular effects of mild and conventional hyperthermia.  相似文献   

17.
18.
This paper considers the properties of the transport of impurity particles in steady fluid flows and describes the principal modes of particle motion. An impurity consisting of particles with a lower density than that of the medium is localized at stationary points of the flow, whereas a heavy impurity can perform a spatially unbounded motion. The conditions for the transition from the bounded motion of a heavy impurity to the long-range transport mode, which occurs as a result of a loss of the stability of the heteroclinic trajectory, are obtained for a model two-dimensional flow having an eddy-cell structure. A mode is found in which a particle, after being transported over a long distance, is trapped forever within the confines of one cell. The transition from regular to chaotic particle transport is analyzed. The question of the effect of a small noise (for example, molecular diffusion) on the character of the motion of a heavy impurity is investigated. It is shown that this effect is important at high viscosity and leads to a transition from bounded motion of the impurity particle to diffusion-type chaotic motion. (c) 1994 American Institute of Physics.  相似文献   

19.
The development of microfluidic (lab-on-a-chip) technology requires local control of fluid flow in the microchannels. Conventional microvalve approaches involve moving parts and/or complicated fabrication techniques, which makes them unreliable and prevents inexpensive integration in microanalytical systems. We have developed a simple low cost method for regulating fluid flow in microchannels that is compatible with existing microfabrication techniques and eliminates the need for moving parts. We use an electrical signal to stimulate silver deposition on a thin solid electrolyte layer in a small region of a microchannel. Since fluid flow is dominated by the nature of the channel surface, the electrodeposited silver changes the fluid–surface interaction and the effect can be used to control the movement of the fluid. Increases in the contact angles of both water and methanol, by 20 and 27 respectively, have been demonstrated. Such changes in hydrophobicity are sufficient to retard or stop capillary or external pressure-driven fluid flow in typical microchannels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号