首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
Ryan Rohm 《Nuclear Physics B》1984,237(3):553-572
A generalization of the dimensional reduction of supersymmetric string theories is introduced which leads to spontaneous breaking of supersymmetry. This supersymmetry breaking has non-trivial consequences for the quantization and dynamics of the theory. The lowest quantum correction to the cosmological constant is calculated and found to be unacceptably large.  相似文献   

2.
We consider a generic supersymmetric matter theory coupled to linearized supergravity, and analyze scenarios for spontaneous symmetry breaking in terms of vacuum expectation values of components of the current supermultiplet. When the vacuum expectation of the energy momentum tensor is zero, but the scalar current or pseudoscalar current gets an expectation, evaluation of the gravitino self energy using the supersymmetry current algebra shows that there is an induced gravitino mass term. The structure of this term generalizes the supergravity action with cosmological constant to theories with CP violation. When the vacuum expectation of the energy momentum tensor is nonzero, supersymmetry is broken; requiring cancellation of the cosmological constant gives the corresponding generalized gravitino mass formula.  相似文献   

3.
In conventional supergravity theories, supersymmetry is broken by a non-zero F-term, and the cosmological constant is fine tuned to zero by a constant in the superpotential W. We discuss a class of supergravity theories with vanishing F-terms but W ≠ 0 being generated dynamically. The cosmological constant is assumed to be cancelled by a non-zero D-term. In this scenario the gravity-mediated soft masses depend only on a single parameter, the gravitino mass. They are automatically universal, independently of the Kähler metric, and real. Thus, dangerous flavor or CP violating interactions are suppressed. Unlike in conventional supergravity models, the Polonyi problem does not arise.  相似文献   

4.
C.M. Hull 《Nuclear Physics B》1984,239(2):541-572
The spontaneous breaking of supersymmetry in the presence of a cosmological constant Λ is discussed in a class of theories that includes gauged supergravity and the recently constructed model of N = 1 supergravity coupled to supermatter. The stability of de Sitter, anti-de Sitter and Minkowski vacua in these theories is investigated. Positivity of energy is demonstrated in a model independent way for supersymmetric vacua, even if the scalar potential is unbounded below, and for global minima of the potential for Λ ? 0.Free fields in anti-de Sitter space are considered and the distinction made between the coefficients of quadratic terms in the lagrangian, which vanish for Goldstone scalars, and the physical masses, which give the frequencies and total energies of modes. The number of degrees of freedom depends on gauge invariance, not on the vanishing of mass.The one-loop corrections to the cosmological constant are given for Λ ? 0 and they vanish if the physical masses obey certain sum rules. It is, however, the bilinear coefficients in the N = 1 supergravity-supermatter lagrangian, rather than the physical masses, that satisfy a quadratic sum rule. This sum rule depends on Λ so that a given mass splitting can be obtained for arbitrarily large supersymmetry breaking scales if Λ is sufficiently large and negative.  相似文献   

5.
It is generally believed that weak scale supersymmetry implies weak scale supergravity, in the sense that the masses of the gravitino and gravitationally coupled moduli have masses below 100 TeV. This Letter presents a realistic framework for supersymmetry breaking in which these masses can be much larger. This solves the cosmological problems of hidden sector models. Supersymmetry breaking is communicated to the visible sector by anomaly-mediated supersymmetry breaking. The framework is compatible with perturbative gauge coupling unification and can be realized either in models of "warped" extra dimensions or in strongly coupled four-dimensional conformal field theories.  相似文献   

6.
Using the new minimal auxiliary fields of N = 1 supergravity it is found possible to construct a model of local supersymmetry which spontaneously breaks both supersymmetry and gauge invariance. The status of the cosmological constant resulting from this breaking is discussed.  相似文献   

7.
For field theories that include the abelian gauge field Aμν? the field equations allow an arbitrary integration constant, which does not appear in the lagrangian but which does affect the physics. We present two applications: (i) the θ parameter of effective lagrangians for chiral symmetry breaking in QCD, and (ii) the cosmological constant in N = 8 supergravity, which does not require a gauging of the O(8) symmetry, but is rather due to a spontaneous breakdown of supersymmetry.  相似文献   

8.
Deconstruction provides a novel way of dealing with the notoriously difficult ultraviolet problems of four-dimensional gravity. This approach also naturally leads to a new perspective on the holographic principle, tying it to the fundamental requirements of unitarity and diffeomorphism invariance, as well as to a new viewpoint on the cosmological constant problem. The numerical smallness of the cosmological constant is implied by a unique combination of holography and supersymmetry, opening a new window into the fundamental physics of the vacuum.  相似文献   

9.
We propose “conformal supersymmetry breaking” models, which tightly relate the conformal breaking scale (i.e. R-symmetry breaking scale) and the supersymmetry breaking scale. Both the scales are originated from the constant term in the superpotential through the common source of the R-symmetry breaking. We show that dynamical tuning between those mass scales significantly reduces the degree of fine-tuning necessary for generating the almost vanishing cosmological constant.  相似文献   

10.
We investigate in detail the groundstates of the supersymmetricSU(5) model. The explicit breaking of supersymmetry is shown to be tightly restricted to select the phenomenologically desired vacuum. If the model contains two or more generations, a breaking of supersymmetry by a cosmological constant yields a potential which is not bounded from below.  相似文献   

11.
Physics of Atomic Nuclei - An attempt is made to explain the tiny order of magnitude of the cosmological constant in a model involvingt he following ingredients: supersymmetry breaking in N = 1...  相似文献   

12.
《Nuclear Physics B》1996,471(3):409-429
We discuss the general form of quadratic (1,1) supergravity in two dimensions, and show that this theory is equivalent to two scalar supermultiplets coupled to nontrivial supergravity. It is demonstrated that the theory possesses stable vacua with vanishing cosmological constant which spontaneously break supersymmetry.  相似文献   

13.
Observational evidence seems to indicate that the expansion of the universe is currently accelerating. Such an acceleration strongly suggests that the content of the universe is dominated by a non-clustered form of matter, the so-called dark energy. The cosmological constant, introduced by Einstein to reconcile General Relativity with a closed and static Universe, is the most likely candidate for dark energy although other options such as a weakly interacting field, also known as quintessence, have been proposed. The fact that the dark energy density is some one hundred and twenty orders of magnitude lower than the energy scales present in the early universe constitutes the cosmological constant problem. We review various aspects of the cosmological constant problem and some interesting scenarios using supersymmetry or extra-dimensions attempting to solve one of the most puzzling issues in physics.  相似文献   

14.
Sandip P. Trivedi 《Pramana》2004,63(4):777-783
We discuss a recent proposal to construct de Sitter vacua in string theory. It is based on flux compactifications in string theory where all the moduli are stabilised and supersymmetry is broken with control. The resulting picture is that of a complicated landscape with many vacua of widely varying values for the cosmological constant.  相似文献   

15.
16.
Using the recently established tensor calculus for supergravity, we construct the most general action for the scalar multiplet coupling. We discuss under which conditions supersymmetry is broken spontaneously and show explicitly that the gravitino acquires a mass by absorbing the Goldstone fermion. Parity violation as well as a cosmological constant can be avoided.  相似文献   

17.
Gauge theories for extended SU(N) conformal supergravity are constructed which are invariant under local scale, chiral, proper conformal, supersymmetry and internal SU(N) transformations. The relation between intrinsic parity and symmetry properties of their generators of the internal vector mesons is established. These theories contain no cosmological constants, but technical problems inherent to higher derivative actions are pointed out.  相似文献   

18.
Solar System tests give nowadays constraints on the estimated value of the cosmological constant, which can be accurately derived from different experiments regarding gravitational redshift, light deflection, gravitational time-delay and geodesic precession. Assuming that each reasonable theory of gravitation should satisfy Solar System tests, we use these limits on the estimated value of the cosmological constant to constrain extended theories of Gravity, which are nowadays studied as possible theories for cosmological models and provide viable solutions to the cosmological constant problem and the explanation of the present acceleration of the Universe. We obtain that the estimated values, from Solar System tests, for the parameters appearing in the extended theories of Gravity are orders of magnitude bigger than the values obtained in the framework of cosmologically relevant theories.  相似文献   

19.
We investigate the possibility of self-tuning of the effective 4D cosmological constant in 6D supergravity, to see whether it could naturally be of order 1/r4 when compactified on two dimensions having Kaluza–Klein masses of order 1/r. In the models we examine supersymmetry is broken by the presence of non-supersymmetric 3-branes (on one of which we live). If r were sub-millimeter in size, such a cosmological constant could describe the recently-discovered dark energy. A successful self-tuning mechanism would therefore predict a connection between the observed size of the cosmological constant, and potentially observable effects in sub-millimeter tests of gravity and at the Large Hadron Collider. We do find self-tuning inasmuch as 3-branes can quite generically remain classically flat regardless of the size of their tensions, due to an automatic cancellation with the curvature and dilaton of the transverse two dimensions. We argue that in some circumstances six-dimensional supersymmetry might help suppress quantum corrections to this cancellation down to the bulk supersymmetry-breaking scale, which is of order 1/r. We finally examine an explicit realization of the mechanism, in which 3-branes are inserted into an anomaly-free version of Salam–Sezgin gauged 6D supergravity compactified on a 2-sphere with nonzero magnetic flux. This realization is only partially successful due to a topological constraint which relates bulk couplings to the brane tension, although we give arguments why these relations may be stable against quantum corrections.  相似文献   

20.
We present a solution to the cosmological constant, the zero-point energy, and the quantum gravity problems within a single comprehensive framework. We show that in quantum theories of gravity in which the zero-point energy density of the gravitational field is well-defined, the cosmological constant and zero-point energy problems solve each other by mutual cancellation between the cosmological constant and the matter and gravitational field zero-point energy densities. Because of this cancellation, regulation of the matter field zero-point energy density is not needed, and thus does not cause any trace anomaly to arise. We exhibit our results in two theories of gravity that are well-defined quantum-mechanically. Both of these theories are locally conformal invariant, quantum Einstein gravity in two dimensions and Weyl-tensor-based quantum conformal gravity in four dimensions (a fourth-order derivative quantum theory of the type that Bender and Mannheim have recently shown to be ghost-free and unitary). Central to our approach is the requirement that any and all departures of the geometry from Minkowski are to be brought about by quantum mechanics alone. Consequently, there have to be no fundamental classical fields, and all mass scales have to be generated by dynamical condensates. In such a situation the trace of the matter field energy-momentum tensor is zero, a constraint that obliges its cosmological constant and zero-point contributions to cancel each other identically, no matter how large they might be. In our approach quantization of the gravitational field is caused by its coupling to quantized matter fields, with the gravitational field not needing any independent quantization of its own. With there being no a priori classical curvature, one does not have to make it compatible with quantization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号