首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Excess molar volumes, V E m, at 25°C and atmospheric pressure, over the entire composition range for binary mixtures of methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol with-methylbutylamine are reported. They are calculated from densities measured with a vibrating-tube densimeter. All the excess volumes are large and negative over the entire composition range. This indicates strong interactions between unlike molecules, which are greatest for the system involving methanol, characterized by the most negative V E m. For the other solutions, V E m at equimolar composition, is approximately the same. The V E m curves vs. mole fraction are nearly symmetrical. The ERAS model is applied to 1-alkanol + N-methylbutylamine, and 1-alkanol + diethylamine systems. The ERAS parameters confirm that the strongest interactions between unlike molecules are encountered in solutions with methanol. The model consistently describes V E m and excess molar enthalpies H E m of the mixtures studied.  相似文献   

2.
Abstract

Excess molar volumes VE of binary mixtures of benzene + 1-propanol, + 1-butanol, + 1-pentanol, + 1-hexanol, + 1-heptanol, + 1-octanol, + 1-nonanol and 1-decanol were measured at 303.15 K. The VE values are positive over the entire range of composition for these mixtures. The results are discussed in terms of intermolecular interactions.  相似文献   

3.
Molar excess enthalpies H E at 298.15 K and atmospheric pressure were determined for 12 binary liquid mixtures, 1-fluoropentane, 1-fluorohexane, or 1-fluorononane + a non-polar solvent (hexane, cyclohexane, benzene, or tetrachloromethane) and were interpreted by the DISQUAC group contribution model. 1-Fluoroalkane + n-alkane mixtures are characterized by two types of groups or contact surfaces, fluorine (F) and alkane (CH3, CH2), the remaining mixtures by the additional contact surfaces of the solvents (C6H12 C6H6, or CCl4). The interchange energies, entirely dispersive, of the alkane-solvent contacts were determined independently from the study of solvent-alkane mixtures. The dispersive F-alkane parameters were assumed to equal the parameters of perfluoroalkanes + n-alkanes. The shape of the H E curves of 1-fluorolkane + polarizable solvent (C6H6, CCl4) mixtures are best reproduced by the model when the quasi-chemical F-solvent parameters are assumed to equal zero. The quasi-chemical F-alkane (the same for n-alkanes and cyclohexane) and the dispersive F-solvent parameters were estimated in this work. The 1-fluoroalkane solutions in C6H6 or CCl4 exhibit the characteristic features of polar solute + polarizable solvent mixtures, viz., the deviations from the ideality are less positive than in alkanes and the experimental H E curves are strongly asymmetrical.  相似文献   

4.
Excess molar volumes V E measured at 15 and 35°C for the (1-propanol + 1-octene), (1-butanol + 1-octene), (1-octanol + 1-octene), and (1-decanol + 1-decene) systems are reported. These data and the measurements reported before at 25°C for this series of mixtures were used to calculate the excess molar isobaric thermal expansion A p E = ( V E/ T)p at 25°C. In the above series of mixtures the A p E values change from positive over the whole concentration range in the systems formed by 1-propanol and 1-butanol, to positive-negative for longer chain alkanols, the positive values occurring in the alkene-rich region. For systems characterized by the sigmoid shape, the positive region of A p E values decreases with increasing length of the 1-alkanol molecule. The modified model of associated mixtures proposed by Treszczanowicz and Benson predicts qualitatively the changes in the shape of the A p E curves. The model allows interpretation of the above results as a balance between the contributions due to self-association of alkanol, nonspecific interactions, and free volume.  相似文献   

5.
Molar excess enthalpies H E have been measured for the binary mixtures MTBE+methanol, MTBE+n-heptane and methanol+n-heptane using a quasi-isothermal flow calorimeter. The measurements have been performed at atmospheric pressure and at 25 and 40°C for all the mixtures and for MTBE+methanol also at 50°C. The experimental results for MTBE methanol and MTBE+n-heptane are compared with those calculated using the NRTL equation.Communicated at the Festsymposium celebrating Dr. Henry V. Kehiaian's 60th birthday, Clermont-Ferrand, France, 17–18 May 1990  相似文献   

6.
《Fluid Phase Equilibria》2002,198(2):313-329
Excess molar volumes, VmE, at 298.15 K and atmospheric pressure over the entire composition range for binary mixtures of methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol and 1-octanol with dibutylamine are reported. They are calculated from densities measured with a vibrating-tube densimeter. All the excess volumes are large and negative over the whole mole fraction range, indicating strong interactions between unlike molecules, which are more important for the systems involving methanol or ethanol, characterized by the most negative VmE. For the other mixtures, VmE at equimolar composition, is approximately constant. The VmE curves are nearly symmetrical. The VmE and excess molar enthalpies (HmE) of the mixtures studied are consistently described by the ERAS model. The ERAS parameters confirm that the strongest interactions between unlike molecules are encountered in the methanol+dibutylamine system.  相似文献   

7.
We have measured excess molar volumes VE m of binary mixtures of triethylene glycol monoethyl ether with methanol, ethanol, 1-propanol, 1-pentanol, and 1-hexanol over the full range of compositions at 25°C. The measurements were carried out with a continuous-dilution dilatometer. The excess molar volumes VE m are negative over the entire range of composition for the systems triethylene glycol monoethyl ether + methanol, + ethanol, and + 1-propanol and positive for the remaining systems, triethylene glycol monoethyl ether + 1-pentanol, and + 1-hexanol. The excess VE m increases in the positive direction with increasing chain length of the n-alcohol. The measured excess volumes have been compared to our previous published data with an effort to assess the effects of replacing methyl by ethyl groups and of inserting oxyethylene groups. The results have been used to estimate the excess partial molar volumes VE m,i of the components. The behavior of VE m and VE m,i with composition and the number of carbon atoms in the alcohol molecule is discussed.  相似文献   

8.
Molar excess volumes of acetonitrile with ten n-alkanols (from methanol to decanol) were determined from density measurements at 25°C and normal atmospheric pressure, using a vibrating-tube densimeter. V E for acetonitrile + methanol mixtures are negative over the entire range of mole fractions. The ethanol and propanol mixtures exhibit sigmoidal curves and positive values are obtained for all remaining mixtures. The results for V E were compared with those obtained using several theoretical models.  相似文献   

9.
The glass-transition temperature (Tg) in mutual binary mixtures of the primary alkanols from methanol throughn-octanol has been measured as a function of composition. For mixtures of the alkanols heavier than ethanol,T g is found to be a linear function of the number-average molecular length. Methanol and ethanol mixtures show higherT g values than indicated by this relation. These results are found to be consistent with association of the heavier alkanols into chains of very great length in the supercooled liquid, while ethanol and methanol must form networks with a moderate degree of crosslinking between chains.  相似文献   

10.
11.
Molar excess mixing enthalpies h E , Gibbs free energies g E and hence entropies s E have been obtained using calorimetry and the vapor sorption method at 25°C for hexane isomers+2,2,4,4,6,8,8-heptamethylnonane, a highly branched C 16 . The h E and g E are negative while Ts E are positive, but small. The values are explained by the Prigogine-Flory theory through negative free volume contributions to h E and Ts E , counterbalanced in the case of Ts E by the positive combinatiorial Ts E for mixing molecules of different size. No contribution is seen from the interaction between methyl and methylene groups. The excess quantities are also obtained for hexane and heptane isomers mixed with n-hexadecane. Values of h E and Ts E are now strongly positive, while those of g E are only slightly less negative. The interpretation requires two recently advanced contributions in addition to those of the Prigogine-Flory theory: 1) a decrease of order when correlations of orientations between n-C 16 molecules in the pure liquid are replaced in the solution by weaker correlations whose strengths depend on the shapes of the lower alkane isomers. For lower alkane isomers of the same shape, but highly sterically hindered, h E and Ts E are small, manifesting, 2) a negative contribution, ascribed to a rotational ordering of n-C 16 segments on the sterically-hindered molecule. Enthalpy-entropy compensation is observed for these new contributions, arising from their rapid fall-off with increase of temperature.  相似文献   

12.
《Fluid Phase Equilibria》2004,216(2):245-256
Excess molar volumes vE and isobaric heat capacities CpE at 298.15 K were measured for 11 mixtures of diisopropyl ether (DIPE)+alcohol (from methanol to 1-undecanol), DIPE with n-heptane and 2,4-dimethylpentane with 1-octanol. Moreover the excess molar enthalpy hE of DIPE with n-heptane at the same temperature was also measured in order to obtain the self-association parameters of the symmetrical extended real associated solution (SERAS) model for DIPE. Parameters of the SERAS model corresponding to the interaction of DIPE with each alcohol were obtained by fitting vE data reported here and hE data taken from a previous work. The results obtained are compared with those from the literature obtained by using the ERAS model in the traditional way for several of the studied mixtures. CpE curves are qualitatively explained in terms of the SERAS model.  相似文献   

13.
Excess molar volumes, V m E, over the whole composition range for binary mixtures of 1-butanol, 2-butanol, and 2-methyl-2-propanol + 1-octanol, or 2-octanol, or di-n-butyl ether, or n-hexylacetate were determined at 298.15 K from density measurements carried out with a vibrating-tube densimeter. Small V m E values, both positive and negative, are displayed by mixtures containing 1- or 2-octanol, whereas positive and larger values are always found for mixtures containing dibutyl ether and hexylacetate. These results can be justified in terms of H-bonding interactions and/or steric hindrance due to the branched alkyl chains. Partial molar volumes at infinite dilution of the isomeric butanols in the C8 compounds were also calculated from the apparent molar volumes in dilute solution. The solute-solvent interactions and the effects of the local organisation of the solvent around the butanol molecules were discussed using the void and cavity volumes as different estimates of the intrinsic volume of the molecules. The volumetric behavior of butanols seems to be determined by the solute-solvent interactions rather than packaging effects.  相似文献   

14.
The excess molar volumes V E have been measured for binary mixtures of triethylene glycol monomethyl ether with methanol, ethanol, 1-propanol, 1-pentanol, and 1-hexanol as a function of composition using a continuous–dilution dilatometer at 25°C at atmosphere pressure. V E are negative over the entire range of composition for the systems triethylene glycol monomethyl ether + methanol, + ethanol, and + 1-propanol, and positive for the remaining systems, containing 1-pentanol and + 1-hexanol. V E increases in a positive direction with increasing carbon chain length of the n-alcohol. The excess partial molar volumes V i E of the components were evaluated from the V E results. The behavior of V E and V i E with composition and the number of carbon atoms in the alcohol molecule is discussed.  相似文献   

15.
Excess molar enthalpies HE have been measured for the binary mixtures trichloroethylene + 2-propanol, + 2-butanol, + 2-pentanol, + 2-hexanol, + 2-heptanol, and + 2-octanol using an isothermal microcalorimeter at 25°C. All the mixtures present exothermic events and showed minimum negative HE values around 0.50–0.60 mole fraction of trichloroethylene. Minimum values of HE vary from 450 J-mol-1 up to 530 J-mol-1 depending on the molecular weight of alkanol. The results are explained in terms of the strong self-association exhibited by the 2-alkanols and the formation of aggregates between unlike molecules through O···HO hydrogen bonding. The experimental results for mixtures are well represented by the Redlich–Kister, NRTL, and Wilson equations, respectively.  相似文献   

16.
Excess molar enthalpies H E mand excess molar volumes V E m at 25°Cand normal atmospheric pressure for the binary mixtures 1-chloropentane + 1-alkanol(from 1-butanol to 1-octanol) have been determined using a Calvet microcalorimeterand from density measurements using a vibrating tube densimeter. The H E m valuesfor all the mixtures are positive and V E m values are positive or negative dependingon the mole fraction of the chloroalkane. Experimental H E m results are comparedwith the predictions of UNIFAC group-contribution models proposed by Dang andTassios and by Larsen et al., and are discussed in terms of molecular interactions.  相似文献   

17.
Abstract

Densities and viscosities of the ternary mixture (benzene + 1-propanol + ethyl acetate) and the corresponding binary mixtures (benzene + 1-propanol, benzene + ethyl acetate and 1-propanol + ethyl acetate) have been measured at the temperature 298.15 K. From these measurements excess volumes, VE , excess viscosities, ηE, and excess Gibbs energies of activation for viscous flow, G*E , have been determined. The equation of Redlich-Kister has been used for fitting the excess properties of binary mixtures. The excess properties of the ternary system were fitted to Cibulka's equation.  相似文献   

18.
Densities, ρ and excess molar volumes, V?E of the binary mixtures of sulfolane, +methanol, +n-propanol,?+n-butanol, and +n-pentanol were measured at temperatures 298.15, 303.15, 308.15, 313.15, and 318.15?K, respectively, covering the whole composition range except methanol at 303.15–323.15?K. The V E for the systems were found to be negative and large in magnitude. The values of V E of the sulfolane, +n-butanol and sulfolane, +n-pentanol mixtures are being positive at lower and higher mole fractions of the alkanols (x 2). The magnitudes of the V E values of the mixtures are in the order sulfolane?+?methanol?>?sulfolane?+?n-propanol?>?sulfolane?+?n-butanol?>?sulfolane?+?n-pentanol. The observed values of V E for the mixtures have been explained in terms of (i) effects due to the differences in chain length of the alcohols, (ii) dipole–dipole interactions between the polar molecules, and (iii) geometric effect due to the differences in molar volume of the component molecules. These are more noticeable in the case of lower alcohols. All these properties have been expressed satisfactorily by appropriate polynomials.  相似文献   

19.
20.
Molar excess volumes, VE, molar excess enthalpies, HE, and speeds of sound data, u, of chloroform (i) + aniline or o-toluidine (j) binary mixtures have been measured as a function of composition at 308.15 K. Isentropic compressibility changes of mixing, have been determined by employing speed of sound data. Topological investigations of VE data reveals that aniline, chloroform and o-toluidine are associated entities and these (i + j) mixtures contain a 1:1 molecular complex. The IR studies lend further support to the nature and extent of interaction for the proposed molecular entity in the mixtures. HE and values have also been calculated by employing Moelwyn-Huggins concept [Polymer 12 (1971) 387] taking topology of the constituents of the mixtures. It has been observed that calculated HE and values compare well with their corresponding experimental values. The observed VE, HE and data have also been analyzed in terms of Flory theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号