首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Phosphorane Iminato Complexes of Antimony. The Crystal Structures of [Sb2Cl5(NPMe3)2][SbCl6] · CH3CN and [SbCl(NPPh3)]2[SbCl6]2 · 6 CH3CN The title compounds are formed by reaction of antimony pentachloride in acetonitrile solution with the phosphorane iminato complexes SbCl2(NPMe3) and SbCl2(NPPh3), respectively, which themselves are synthesized by reaction of antimony trichloride with Me3SiNPR3 (R = Me, Ph). The complexionic compounds are characterized by 121Sb Mössbauer spectroscopy and by crystal structure determinations. [Sb2Cl5(NPMe3)2][SbCl6] · CH3CN: Space group P41, Z = 4, 3 698 observed unique reflections, R = 0.022. Lattice dimensions at ?60°C: a = b = 1 056.0(1), c = 2 709.6(2) pm. The structure consists of SbCl6? ions and cations [Sb2Cl5(NPMe3)2(CH3CN)]+, in which one SbIII atom and one SbV atom are bridged by the N atoms of the phosphorane iminato ligands. [SbCl(NPPh3)]2[SbCl6]2 · 6 CH3CN: Space group P1 , Z = 2, 5 958 observed unique reflections, R = 0.033. Lattice dimensions at ?60°C: a = 989.4(11), b = 1 273(1), c = 1 396(1) pm, α = 78.33(7), β = 77.27(8)°, γ = 86.62(8)°. The structure consists of SbCl6? ions and centrosymmetric cations [SbCl(NPPh3)(CH3CN)2]22+, in which the antimony atoms are bridged by the N atoms of the phosphorane iminato ligands.  相似文献   

3.
Oxidative Addition of N‐chlorotriphenylphosphoraneimine onto Phosphorus(III) Chloride and Antimony(III) Chloride. Crystal Structures of (Cl3PNPPh3)2[PCl6][ClHCl], [SbCl4(HNPPh3)2][SbCl6], and [Sb(NPPh3)4][SbCl6] Phosphorus(III) chloride reacts with N‐chlorotriphenylphosphoraneimine, ClNPPh3, in CH2Cl2 solution strongly exothermically via oxidative addition to give (Cl3PNPPh3)2[PCl6][ClHCl] ( 1 ). As a by‐product, Ph3PNP(O)Cl2 can be obtained, which is formed from PCl3 and ClNPPh3 in the presence of POCl3. In contrast to these results, antimony(III) chloride reacts with ClNPPh3 in CH2Cl2 solution to give a mixture of the phosphoraneimine complex [SbCl4(HNPPh3)2][SbCl6] ( 2 ) and the phosphoraneiminato complex [Sb(NPPh3)4][SbCl6] ( 3 ). The complexes 1 ‐ 3 were characterized by IR spectroscopy and by single crystal X‐ray determinations. 1 : Space group C2/c, Z = 4, lattice dimensions at 193 K: a = 3282.0(2), b = 798.7(1), c = 1926.1(2) pm, β = 107.96(1)°, R1 = 0.0302. 1 contains [Cl3PNPPh3]+ cations with PN bond lengths of 152.5(2) and 160.9(2) pm, and a PNP bond angle of 140.5(1)°. 2 ·CH2Cl2: Space group , Z = 2, lattice dimensions at 193 K: a = 1031.2(1), b = 1448.3(2), c = 1811,4(2) pm, α = 70.96(1)°, β = 87.67(1)°, γ = 75.37(1)°, R1 = 0.0713. 2 ·CH2Cl2 contains cations [SbCl4(HNPPh3)2]+ with octahedrally coordinated Sb atom and the HNPPh3 ligand molecules being in trans‐position. Sb–N bond lengths are 207.6(6) and 209.3(6) pm, PN bond lengths 162.3(7) and 160.8(7), which approximately corresponds with double bonds. 3 ·0.5CH2Cl2: Space group P4/n, Z = 2, lattice dimensions at 193 K: a = b = 1678.8(1), c = 1244.3(1) pm, R1 = 0.0618. 3 ·0.5CH2Cl2 contains [Sb(NPPh3)4]+ cations with tetrahedrally coordinated Sb atom and short Sb–N bond lengths of 193.7(6) pm. The PN distances of the phosphoraneiminato ligands, (NPPh3)? with 156.5(6) pm, correspond with double bonds, the SbNP bond angles are 130.6(3)°.  相似文献   

4.
Adducts of Sulfur-containing Hetero Aromates with SbCl3: Studies on Formation and Crystal Structure of 2,2′-Dithienyl · 2 SbCl3 and Benzo[b]thiophene · 2 SbCl3 Whereas the system 2,2′-dithienyl—SbCl3 because of irreversible thermal decomposition reactions could not be studied by DTA, this method applied to the system benzo[b]thiophene—SbCl3 yielded a quasibinary behaviour and the existence of a compound benzo[b]thiophene · 2SbCl3. melting congruently at 71.2°C. Crystals of this adduct and that of analogue composition 2,2′-dithienyl · 2SbCl3 were obtained from solution. Their structures were determined by X-ray diffraction as those of bπ-v complexes. They are compared with other Menshutkin complexes. The π…?Sb interactions are indicated by distances between the planes of the planar hetero aromates and the Sb atoms located in a transoid way above both single rings of 316 (dithienyl adduct) and 325 pm (benzothiophene adduct). There is no particular coordinative bond formation by the S atoms. The intermolecular linking in the SbCl3 partial structures is described.  相似文献   

5.
Antimony tetrachloride azide (SbCl4N3)2 crystallizes in the monoclinic space group P21/n; the lattice parameters are: a = 8.051, b = 9.353, c = 10.124 Å; β = 93.75°; Z = 2. The crystal structure was solved with the aid of a Patterson synthesis and was refined by the method of least-squares to R = 4.9% for the 922 observed reflexions. The structure is built up from centrosymmetrical (SbCl4N3)2 molecules (idealized point symmetry 2/m) which are arranged in the way of a body centered lattice. The linear azido groups are inclined against the planar (Sb–αN)2 ring of the molecule by an angle of 24°. Each Sb atom is coordinated by two N and four Cl atoms in a distorted octahedral arrangement.  相似文献   

6.
7.
8.
9.
The structure of N,N-dimethylethylenediammonium pentachloroantimonate(III), [(CH3)2NH(CH2)2NH3][SbCl5], NNDP, was investigated at 100 and 15 K at ambient pressure, as well as at pressures up to 4.00 GPa at room temperature in the diamond-anvil cell. The stable structure at low temperatures and low pressures consists of isolated [SbCl5]2- anions and [(CH3)2NH(CH2)2NH3]2+ cations. The inorganic anions have a distorted square pyramidal geometry. They are arranged in linear chains parallel to the c axis. In contrast to the low-temperature studies, where no phase transition was detected, pressure induces a P2(1)/c --> P2(1)/n phase transition between 0.55 and 1.00 GPa, accompanied by a doubling of the a unit-cell parameter. This solid-solid transition results from changes in the electron configuration of the Sb(III) atom and formation of the Sb-Cl bridging bonds between inorganic polyhedra to form, at approximately 1.0 GPa, isolated [Sb2Cl10]4- units consisting of [SbCl6]3- octahedra and [SbCl5]2- square pyramids connected by a common corner. The intermolecular distances continuously decrease with further increase in pressure, and at approximately 3.1 GPa, zigzag [{SbCl5}n]2n- chains containing corner-sharing [SbCl6]3- octahedra are formed. The unit-cell volume of NNDP decreases by 18.15% between room pressure and 4.00 GPa. The linear distortions of the [SbCl5]2- and [SbCl6]3- polyhedra decrease with increasing pressure and decreasing temperature and indicate a reduction in the stereochemical activity of the lone electron pair on the Sb(III) atom.  相似文献   

10.
The kinetics of polymerization of 1, 3-dioxolane (DiOX) initiated by (C2H5)3O+SbCl6 and SbCl5 has been studied and the elementary stages of the process have been considered. The polymerization of DiOX by (C2H5)3O+SbCl6-is shown to proceed at a steady rate to high conversion. A constant concentration of active centers in the system is maintained due to the equal rates of decomposition of active centers and disproportionation. The nonsteady-state character of DiOX polymerization initiated by SbCl5is associated with a relatively lower stability of the counter-ion SbCl5 OR? compared with SbCl6. The initiation of DiOX polymerization by (C2H5)3O+SbCl6 proceeds without hydride-transfer reactions, and the concentration of active centers in the system is determined not by processes taking place in the initiation stage, but by the existence of a definite kind of equilibrium with the participation of active centers.  相似文献   

11.
Vibrational Spectra of Trimethylphosphonium Cations (CH3)3PX+ (X = H, D) and Crystal Structures of (CH3)3PD+SbCl6? and (CH3)3PCl+SbCl6? The trimethylphosphonium salts (CH3)3PX+SbCl6? (X = H, D) and (CH3)3PH+MF6? (M = As, Sb) are prepared and characterized by vibrational and NMR spectroscopy (1H, 31P, 13C). In addition the crystal structures of (CH3)3PD+SbCl6? and (CH3)3PCl+SbCl6? are reported. (CH3)3PD+SbCl6? crystallizes in the orthorhombic space group Pnma with a = 1555(1) pm, b = 753.1(8) pm, c = 1166(1) pm Z = 4. (CH3)3PCl+SbCl6? crystallizes triclinic in the space group P1 with a = 704.6(4) pm, b = 729.5(3) pm, c = 1391.1(7) pm, α = 89.57(4)°, b? = 88.04(4)°, γ = 74.98(4)° and Z = 2.  相似文献   

12.
Synthesis and Structure of [(Me2PhP)3Cl2ReN]2ReCl4, [(Me2PhP)3Cl2ReN]2ReCl4 · 2 SbCl3 and [Re(NH)Cl2(PMe2Ph)3][SbCl6] The reaction of ReNCl2(PMePh)3 with SbCl5 in toluene yields the trinuclear complex [(Me2PhP)3Cl2Re≡N]2ReCl4 · 2 SbCl3 ( 1 · 2 SbCl3). It forms triclinic crystals with the composition 1 · 2 SbCl3, as well as monoclinic crystals 1 · 2 SbCl3 · 4 C7H8. The monoclinic crystals with the space group P21/c, and a = 1212.3(2), b = 2098.5(4), c = 1827.7(3) pm, β = 95.51(1)°, Z = 2, have been used for a crystal structure determination. In the centrosymmetric complex 1 two complexes ReNCl2(PMe2Ph)3 coordinate with their nitrido ligands a square planar, central unit ReCl4. The SbCl3 molecules are coordinated by chlorine bridges to Cl atoms of 1 , and, in addition, connect the complexes 1 with each other. The SbCl3 free compound 1 is obtained in good yield by the reaction of ReNCl2(PMePh)3 with ReCl4(NCEt)2. It crystallizes in the triclinic space group P1 with a = 1037.7(3), b = 1153.0(2), c = 1393.8(3) pm, α = 72.31(2)°, β = 74.06(2)°, γ = 67.94(2)°, and Z = 1. The bond lengths of the Re–N triple bonds are 172 pm in 1 and 170 pm in 1 · 2 SbCl3. By the reaction of ReNCl2(PMePh)3 with SbCl5 in CH2Cl2 the solvent is decomposed forming HCl which protonates the nitrido ligand to afford the imido complex [Re(NH)Cl2(PMe2Ph)3][SbCl6] ( 2 ) crystallizing in the monoclinic space group P21/n with a = 1221.4(2), b = 1358.6(2), c = 2177.3(1) pm, β = 92,72(1)° and Z = 4. The Re–N distance in the almost linear unit Re≡N–H is 169,1 pm.  相似文献   

13.
14.
15.
16.
17.
Preparation of Dimethyl(mercapto)sulfonium-hexachloroantimonate [(CH3)2SSH]+SbCl6? The preparation of [(CH3)2SSH]+SbCl6? from [(Ch3)2SCl]+SbCl6? and H2S at 223 K is reported. This salt is stable below 243 K and is characterized by vibrational spectroscopy.  相似文献   

18.
Synthesis and Crystal Structure of the Ionic Tellurium Nitride Chloride[Te3N2Cl5(SbCl5)]+SbCl6? The title compound has been prepared by the reaction of Te2NCl5 with antimony pentachloride in CH2Cl2 suspension. It is characterized by IR spectroscopy and by a crystal structure determination. Space group P21/c, Z = 4, lattice dimensions at ?70°C: a = 1535.6, b = 1259.5, c = 1572.4 pm, β = 109.30°, R = 0.031. The compound forms an ionic pair with the central group of a (TeNCl)2 molecule in which the tellurium atoms are linked by the nitrogen atoms to give a planar Te2N2 four-membered ring. One of the nitrogen atoms is coordinated by a TeCl3+ unit, the other one by an antimony pentachloride molecule. According to the IR spectra a structure like [Te2N2Cl2(TeCl4)2] is proposed for Te2NCl5.  相似文献   

19.
[Sb(12-Crown-4)2(CH3CN)][SbCl6]3 and [Bi(12-Crown-4)2(CH3CN)][SbCl6]3, first Trications of Antimony(III) and Bismuth(III) The crown ether complexes [M(12-crown-4)2(CH3CN)][SbCl6]3 with M = Sb and Bi are formed by the reaction of antimony trichloride and bismuth trichloride, respectively, with antimony pentachloride in acetonitrile solution in the presence of 12-crown-4. They form colourless, moisture sensitive crystals, which were characterized by X-ray structure determinations and by IR spectroscopy. The complex with M = Sb was also characterized by 121Sb Mössbauer spectroscopy. Both complexes crystallize isotypically in the orthorhombic space group Pbcn with four formula units per unit cell. M = Sb: 3 483 observed unique reflections, R = 0.038. M = Bi: 2 958 observed unique reflections, R = 0.036. The compounds consist of SbCl6? ions and trications [M(12-crown-4)2(CH3CN)]3+, in which the M3+ ions are ninefold coordinated by the eight oxygen atoms of the crown ether molecules and by the nitrogen atom of the acetonitrile molecule. The lone pair of the M3+ ions has no steric effect.  相似文献   

20.
The Crystal Structure of the 2:1 Addition Compound between Antimony Trichloride and Diphenyl, 2SbCl3 · (C6H5)2 The 2:1 adduct of antimony trichloride with diphenyl, 2SbCl3 · (C6H5)2, crystallizes in the triclinic space group P1 with a = 13.498(5) Å, b = 7.884(2) Å, c = 9.341(3) Å, α = 86.40(2)°, β = 110.05(3)0, γ = 91.41(2)° and Z = 2. Each SbCl3 molecule points to a phenyl ring of the diphenyl molecule. The distances from the two independent Sb atoms to the phenyl ring planes differ (3.26 and 3.08 Å). The torsion angle between the phenyl ring planes within the diphenyl molecule is 40.5°. The mean Sb? Cl bond distance is 2.39 Å. Longer Sb…Cl contacts of 3.44 to 3.46 Å and the π-donor-acceptor interactions complete the distorted octahedral coordination, and ψ-octahedral coordination respectively, of the Sb atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号