首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions between CoO, ZnCl2 (or ZnBr2), and molten citric acid (Hcit) led to the formation of two 3d‐3d heterometallic coordination frameworks: [ZnCo(Hcit)Cl] ( 1 ) and [ZnCo(Hcit)Br] ( 2 ). X‐ray structure analyses show that both compounds 1 and 2 crystallize in the monoclinic space group P21/n [ 1 : a = 5.8699(5) Å, b = 17.7963(13) Å, c = 9.2152(8) Å, β = 106.806(4) °, Z = 4, V = 921.53(13) Å3; 2 : a = 5.909(3) Å, b = 17.798(8) Å, c = 9.302(5) Å, β = 106.374(7) °, Z = 4, V = 938.6(8) Å3]. The structures of the two compounds are almost the same except for the terminal halogen ligand. Both of them are 3D frameworks based on citric acid bridging ligands and a 1D backbone chain built of corner‐shared {CoO6} and {ZnO3Cl} polyhedra. Photoluminescence and thermal stabilities of the compounds were studied.  相似文献   

2.
The reaction of [NH4]2WOS3 with Cu(CH3CN)4ClO4 and 1, 10‐phenanthroline(phen) in CH2Cl2 afforded the butterfly‐shaped cluster {[WOS3Cu2(phen)2] · CH2Cl2} ( 1 ), which was characterized by elemental analysis, single‐crystal X‐ray diffraction as well as IR and fluorescence spectroscopy. The complex crystallizes in the triclinic system with space group P$\bar{1}$ [a = 8.3976(17) Å, b = 9.6771(19) Å, c = 18.460(4) Å, α = 89.94(3)°, β = 80.33(3)°, γ = 70.38(3)°, V = 1390.5(5) Å3, and Z = 2]. Single crystal X‐ray diffraction analysis reveals that complex 1 displays pairwise π–π stacking. Density functional theory and time‐dependent density functional theory calculations at the B3LYP/LanL2DZf+6‐31G* level were performed on complex 1 to rationalize its experimental absorption spectra. Fluorescence spectroscopy reveals that complex 1 exhibits luminescence in EtOH solution at room temperature.  相似文献   

3.
Two different tautomeric forms of a new Schiff base, C17H19N3O2·C17H19N3O2, are present in the crystal in a 1:1 ratio, namely the enol–imine form 4‐(1‐{[4‐(dimethylamino)benzylidene]hydrazono}ethyl)benzene‐1,3‐diol and the keto–amine form 6‐[(E)‐1‐{[4‐(dimethylamino)benzylidene]hydrazino}ethylidene]‐3‐hydroxycyclohexa‐2,4‐dien‐1‐one. The tautomers are formed by proton transfer between the hydroxy O atom and the imine N atom and are hydrogen bonded to each other to form a one‐dimensional zigzag chain along the crystallographic b axis via intermolecular hydrogen bonds.  相似文献   

4.
New Fluoropalladates(II) Single crystal investigations on \documentclass{article}\pagestyle{empty}\begin{document}$ \begin{array}{*{20}c} {[6][4]} \\ {{\rm CsPdPdF}_{\rm 5} } \\ \end{array} $\end{document} (orange brown) demonstrate the close structural relationship to the CsAgFeF6 – and CsNiNiF6-type, respectively. One half of the Pd2+ ions is surrounded octahedrally, whereas the other half, because of the “absence” of one F?, is coordinated planar quadratically. CsPd2F5 crystallizes orthorhombic (Imma – D, No. 74; Z = 4) with a = 6.533, b = 7.862, c = 10.79 Å (four circle diffractometer data). From Guinier data are isotypic CsMgPdF5 (yellow, a = 6.603(2), b = 7.415(2), c = 10.548(3) Å), CsZnPdF5 (beige, a = 6.576(1), b = 7,483(2), c = 10.645(2) Å), CsNiPdF5 (yellow, a = 6.499(1), b = 7.504(2), c = 10.575(3) Å) and CsCoPdF5 (brown, a = 6.527(1), b = 7.553(1), c = 10.659(2) Å). Besides of CsPd2F5 there exist compounds of the composition Me3PdF5 on the alkali-rich side of the system MeF/PdF2. Single crystal investigations for Rb3PdF3 (yellow, P4/mbm–D, No. 127; Z = 2) led to a = 7.467, c = 6.497 Å (four circle diffractometer data). Isotypic are (single crystal data) Cs3PdF5 (yellow, a = 7.848, c = 6.688 Å) and Rb2CsPdF5 (yellow, ordered distribution of the alkali ions, a = 7.575, c = 6.445 Å).  相似文献   

5.
Crystal structure determinations of {[(F5C6COO)Bu2Sn]2O}2 and {[(4-F-C6H4COO)-Bu2Sn]2O}2 show that the structures are similar and feature central Bu4Sn2O2 units with two Bu2Sn groups connected by bridging oxygen atoms. Each pair of exo- and endo-cyclic tin atoms is linked by an almost symmetrically bridging carboxylate group, with the two remaining groups attached to the exocyclic tin atom only. Crystals of {[(F5C6COO)Bu2Sn]2O}2 are triclinic, space group P1, with unit cell dimensions a = 12.425(3) Å, b = 13.090(5) Å, c = 11.697(3) Å, α = 95.31(3)°, β = 93.28(2)°, γ = 113.01(2)°, V = 1734(1) Å3, Z = 1. Crystals of {[(4-F-C6H4COO)Bu2Sn]2O}2, are also triclinic, space group PI, a = 12.599(6) Å, b= 25.359(4) Å, c = 11.480(4) Å, α = 91.44(3)°, β = 114.77(3)°, γ=97.43(3)°, V=3289(2) Å3, Z=2. The structures were refined to final R= 0.046, Rw = 0.046 for 4312 reflections with I≥ 3.0 σ(l) for {[(F5C6COO)Bu2Sn]2O}2 and R=0.061, Rw=0.068 for 4112 reflections with l≥3.0 σ(l for {[(4-F-C6H4COO)Bu2Sn]2O}2.  相似文献   

6.
Methyl 2-acetyl-3-{[2-(dimethylamino)-1-(methoxycarbonyl)ethenyl]amino}prop-2-enoate ( 4 ) and phenyl-methyl 2-acetyl-3-{[2-(dimethylamino)-1(methoxycarbonyl)ethenyl]amino}prop-2-enoate ( 5 ) were prepared in three steps from the corresponding acetoacetic esters, and used as reagents for the preparation of N3-protected 3-amino-4H-pyrido[1,2-a]pyrimidin-4-ones 10 – 12 , 5H-thiazolo[3,2-a]pyrimidin-5-one 13 , 4H-pyrido[1,2-a]-pyridin-4-one 19 and 2H-1-benzopyran-2-ones 20 – 23 . Free 3-amino-4H-pyrido[1,2-a]pyrimidin-4-ones 24 – 26 were prepared from 10 – 12 by removal of the 2-(methoxycarbonyl)-3-oxobut-1-enyl or 3-oxo-2-[(phenyl-methoxy)carbonyl]but-1-envl as N-protecting group by various methods.  相似文献   

7.
Three new letrozole complexes {[Cu(Le)4Cl2] · (H2O)} ( 1 ), {[Ni(Le)4Cl2] · (H2O)}( 2 ) and {[Co(Le)4Cl2] · (H2O)} ( 3 ) (Le = letrozole = 1‐[bis(4‐cyanophenyl)methyl]‐1, 2, 4‐triazole) were obtained from self‐assembly of CuCl2, NiCl2 · 6H2O, and CoCl2 · 6H2O with medicine letrozole. All compounds were characterized by IR spectroscopy, elemental, single‐crystal as well as powder X‐ray diffraction, and thermogravimetric analyses. The analyses of the structures indicate that all crystals belong to monoclinic system, space group C2/c, for complex 1 with crystal data a = 34.501(18) Å, b = 12.724(7) Å, c = 16.116(9) Å, β = 114.958(7) °, V = 6414(6) Å 3, Z = 4, F(000) = 2660, R1 = 0.0668, wR2 = 0.1574; for complex 2 , a = 34.769(6) Å, b = 12.7267(18) Å, c = 16.046(2) Å, β = 115.281(3) °, V = 6420.1(16) Å 3, Z = 4, F(000) = 2656, R1 = 0.0510, wR2 = 0.0896; for complex 3 , a = 35.063(8) Å,b = 12.658(3) Å, c = 16.056(4) Å, β = 115.387(3) °, V = 6438(2) Å3, Z = 4, F(000) = 2652, R1 = 0.0528, wR2 = 0.1205. The local arrangements around central metal atoms (CuII, NiII, and CoII) can be best described as distorted octahedra which are constructed by two chlorine atoms and four monodentate nitrogen atoms from different letrozole ligands. XRD results of 1 – 3 show that all peaks displayed in the measured patterns at room temperature closely match those in the simulated patterns generated from single‐crystal diffraction data, indicating single phases of 1 – 3 were formed.  相似文献   

8.
Two new glutarato bridged coordination polymers {[Mn(phen)]2(C5H6O4)4/2} ( 1 ) and {[Zn(phen)(H2O)](C5H6O4)2/2}· H2O ( 2 ) were structurally characterized on the basis of single crystal X‐ray diffraction data. Crystal data: ( 1 ) P2/c (no. 13), a = 10.340(2)Å, b = 10.525(2)Å, c = 13.891(2)Å, β = 98.31(1)°, U = 1495.9(5)Å3, Z = 2; ( 2 ) P21/n (no. 14), a = 6.738(1)Å, b = 25.636(3)Å, c = 10.374(1)Å, β = 106.13(1)°, U = 1721.4(4)Å3, Z = 4. Complex 1 consists of 1D ribbon‐like {[Mn(phen)]2(C5H6O4)4/2} chains, in which the [Mn(phen)] units were interlinked by glutarato ligands to generate 8‐ and 16‐membered rings. The Mn atoms are octahedrally coordinated by two N atoms of one phen ligand and four O atoms of three glutarato ligands with d(Mn‐N) = 2.270, 2.276Å, d(Mn‐O) = 2.114—2.283Å. Through the interchain π‐π stacking interactions, the 1D chains are assembled into 2D puckered layers, which are further held together by interlayer π‐π stacking interactions into a 3D network. Complex 2 is built up by 1D {[Zn(phen)(H2O)](C5H6O4)2/2} linear chains and hydrogen bonded H2O molecules. The Zn atoms are coordinated by two N atoms of one phen ligand and three O atoms of one H2O molecule and two glutarato ligands to form slightly elongated trigonal bipyramids with the water O atom and one phen N atom at the apical positions (d(Zn‐N) = 2.101, 2.168Å, d(Zn‐O) = 1.991—2.170Å). The 1D linear chains result from [Zn(phen)(H2O)] units bridged by bis‐monodentate glutarato ligands. The resulting 1D chains are assembled by π‐π stacking interactions into 2D layers, between which the hydrogen bonded H2O molecules are situated.  相似文献   

9.
Hydrated alkaline earth metal salts of 5‐amino‐1H‐tetrazole ( B ) were synthesized by reaction of B with a suitable metal hydroxide in water. All compounds were fully characterized by analytical (elemental analysis and mass spectrometry) and spectroscopic (IR, Raman, 1H and 13C NMR) methods. Additionally, the crystal structures of the magnesium [ 1· 4H2O: triclinic, P$\bar {1}$ , a = 5.940(1) Å, b = 7.326(1) Å,c = 7.383(1) Å, α = 106.10(1)°, β = 106.51(1)°, γ = 111.85(1)°, V = 258.0(1) Å3], calcium [ 2· 6H2O: monoclinic, P21/m, a = 6.904(1) Å,b = 6.828(1) Å, c = 10.952(2) Å, β = 94.50(2)°, V = 514.6(1) Å3], and strontium [ 3· 6H2O: orthorhombic, Cmcm, a = 6.987(1) Å, b = 28.394(2) Å, c = 7.007(1) Å, V = 1390.3(2) Å3] were determined by low temperature X‐ray diffraction. Additionally, the (gas phase) structure of the 5‐amino‐1H‐tetrazole anion ([ B ]) was also studied by natural bond orbital (NBO) analysis [B3LYP/6‐31+G(d,p)]. Lastly, standard tests were used to determine the sensitivity towards impact, friction, and electrostatic discharge of the compounds and the thermal stability was assessed by differential scanning calorimetry (DSC) analysis.  相似文献   

10.
The crystal structure of 1, 1'‐bis{[4‐(1, 10‐phenanthroline‐3‐yl‐ethynyl)‐2, 5‐dipropoxy‐phenyl]ethynyl}ferrocene ( 1 ) is reported. This compound crystallizes with two chloroform solvent molecules in the monoclinic space group P21/c (No. 14), a = 15.4253(11), b = 23.2003(10), c = 17.2630(13) Å, β = 90.866(9)° and Z = 4. Both arms of the ferrocene moiety are parallel displaced with the four nitrogen atoms pointing to the same direction.  相似文献   

11.
Three adipato bridged mixed ligand catena complexes {[M(phen)(H2O)]‐(C6H8O4)2/2} with M = NiII ( 1 ), CuII ( 2 ), ZnII ( 3 ) were synthesized. Structure determination based on X‐ray diffraction shows that they crystallize isostructurally in the monoclinic space group C2/c (no. 15) with cell dimensions of: 1 a = 22.451(4)Å, b = 9.041(1)Å, c = 17.440(2)Å, β = 103.41(1)°, U = 3443.4(9)Å3, Z = 8; 2 a = 22.479(2)Å, b = 9.067(1)Å, c = 17.494(3)Å, β = 103.67(1)°, U = 3464.6(8)Å3, Z = 8; 3 a = 22.635(3)Å, b = 9.052(1)Å, c = 17.571(3)Å, β = 103.24(1)°, U = 3504.5(9)Å3, Z = 8. The crystal structure consists of 1D {[M(phen)(H2O)]‐(C6H8O4)2/2} zigzag chains, in which the metal atoms are all octahedrally coordinated by two N atoms of one phen ligands and four O atoms of one H2O molecule and two adipato ligands. The zigzag chains are held together by interchain π‐π stacking interactions and interchain hydrogen bonds.  相似文献   

12.
The metal thiophosphates Rb2AgPS4 ( 2 ), RbAg5(PS4)2 ( 3 ), and Rb3Ag9(PS4)4 ( 4 ) were synthesized by stoichiometric reactions, whereas Rb6(PS5)(P2S10) ( 1 ) was prepared with excess amount of sulfur. The compounds crystallize as follows: 1 monoclinic, P21/c (no. 14), a = 17.0123(7) Å, b = 6.9102(2) Å, c = 23.179(1) Å, β = 94.399(4)°; 2 triclinic, P$\bar{1}$ (no. 2), a = 6.600(1) Å, b = 6.856(1) Å, c = 10.943(3) Å, α = 95.150(2)°, β = 107.338(2)°, γ = 111.383(2)°; 3 orthorhombic, Pbca (no. 61), a = 12.607(1) Å, b = 12.612(1) Å, c = 17.759(2) Å; 4 orthorhombic, Pbcm (no. 57), a = 6.3481(2) Å, b = 12.5782(4) Å, c = 35.975(1) Å. The crystal structures contain discrete units, chains, and 3D polyanionic frameworks composed of PS4 tetrahedral units arranged and connected in different manner. Compounds 1 – 3 melt congruently, whereas incongruent melting behavior was observed for compound 4 . 1 – 4 are semiconductors with bandgaps between 2.3 and 2.6 eV and thermally stable up to 450 °C in an inert atmosphere.  相似文献   

13.
Benzoyl-pentafluoropropionylmethylene triphenylarsorane contains two strongly electron-withdrawing groups in alkylidene moiety. Single crystals obtained from CH3OH-H2O solution are triclinic, the space group is \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm{P}}\bar 1 $\end{document}, with a = 12.292Å, b = 13.457Å, c = 15.318Å, α = 90.562° β = 90.516°, γ = 92.820°, and Z = 4. The X-ray diffraction intensity data were collected with a four-circle diffractometer. The structure has been solved by heavy-atom method and refined by block-diagonal least-squares method. The final R was 0.061 for 8393 independent observed reflections. The ylide carbon is planar sp2 hybridized. The bond length of As-Cylide is 1.888Å, much longer than As = C, and also longer than the corresponding bond length in other arsonium ylides previously reported, indicating a smaller contribution of “double bond” canonical form to the overall structure. On the other hand, the easier delocalization of negative charge due to the two strongly electron-withdrawing groups results in the greater chemical stability.  相似文献   

14.
Neptunium triselenide, NpSe3, was synthesized in high yield by the reaction of the elements in a Sb2Se3 flux at 1223 K. Its structure has been determined by single‐crystal X‐ray diffraction methods. Thecompound crystallizes with two formula units in space group C$\rm^{2}_{2h}$ –P21/mof the monoclinic system in the TiS3 structure type with cell constants at 100 K of a = 5.592(3) Å, b = 4.002(2) Å, c = 9.422(5) Å,β = 97.40(1) °. The asymmetric unit comprises one neptunium and three selenium atoms, each with site symmetry m. Np–Se interatomic distances range from 2.859(2) to 2.927(3) Å; the Se–Se bond length of 2.340(3) Å is typical of a single bond. The compound may thus be charge‐balanced and formulated as Np4+Se2–Se22–.  相似文献   

15.
The unusual 12‐membered ring compound, octahydro‐5H,12H‐4,11‐methano‐1H,7H‐bis[1,2,5]oxadiazolo[3,4‐d:3′,4′‐j][1,7,3,9]dioxadiazacyclododecine is obtained from the acid catalyzed reaction of 3‐amino‐4‐hydroxymethylfurazan with formaldehyde instead of the expected methylene‐bridged compound, 4,4′‐methylenebis[4,5‐dihydro‐7H‐[1,2,5]oxadiazolo[3,4‐d][1,3]oxazine]. The compound crystallizes in Tetragonal, P43212, a = 6.4141(4) Å, b = 6.4141(4) Å, c = 26.525(3) Å, α = 90°, β = 90°, γ = 90°, V = 1091.27(16) Å3, Z = 4, dcalc = 1.614 Mg/m3.  相似文献   

16.
The crystal and molecular structures have been determined by single-crystal X-ray methods for the binuclear metal ions (II) complexes of 7-azaindole (1H-pyrrolo [2,3-b] pyridine, C7H6N2 denoted by HL), Cu2(CH3CO2)2.·L2(HL)2 and Ni2L4.2DMF. The dark green crystal of Cu2(CH3CO2)2L2(HL)2 was found to crystallize in the monoclinic space group P 21/n with a = 9.566(2), b = 12.752(2), c = 12.852(4) Å, β = 99.23(3)0, V = 1547 Å, Z = 2, the final R = 0.062 and Rw = 0.053 for 1488 observations from 2722 unique reflections. The Cu-Cu distance is 2.747(2), Cu-N (L?, bridge) is 1.966(7), Cu-N (HL, axial) is 2.229(8), and Cu-O is 2.031(6)Å. The red crystal of Ni2L4.2DMF was was found to crystallize in the triclinic space group \documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm P \bar 1} $$\end{document} with a = 8.907(5), b = 9.462(2), c = 10.217(2) Å, α = 90.48(2), β = 91.09(3), γ = 110.69(3)0, V =805 Å3, Z = 1, the final R = 0.063 and Rw = 0.069 for 1489 observations from 2834 unique reflections. The Ni-Ni distance is 2.594(2), Ni-N is 1.905(7) Å. These two molecules lie on crystllographic inversion centers and exhibit ligand disorder.  相似文献   

17.
The new asymmetrical organic ligand 2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole ( L , C17H13N5O), containing pyridine and imidazole terminal groups, as well as potential oxdiazole coordination sites, was designed and synthesized. The coordination chemistry of L with soft AgI, CuI and CdII metal ions was investigated and three new coordination polymers (CPs), namely, catena‐poly[[silver(I)‐μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole] hexafluoridophosphate], {[Ag( L )]PF6}n, catena‐poly[[copper(I)‐di‐μ‐iodido‐copper(I)‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)] 1,4‐dioxane monosolvate], {[Cu2I2( L )2]·C4H8O2}n, and catena‐poly[[[dinitratocopper(II)]‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)]–methanol–water (1/1/0.65)], {[Cd( L )2(NO3)2]·2CH4O·0.65H2O}n, were obtained. The experimental results show that ligand L coordinates easily with linear AgI, tetrahedral CuI and octahedral CdII metal atoms to form one‐dimensional polymeric structures. The intermediate oxadiazole ring does not participate in the coordination interactions with the metal ions. In all three CPs, weak π–π interactions between the nearly coplanar pyridine, oxadiazole and benzene rings play an important role in the packing of the polymeric chains.  相似文献   

18.
Four new nickel(II), zinc(II), and cobalt(II) complexes, [Zn(L1)2]?·?H2O (1), [Ni(L1)2]?·?H2O (2), [Ni(L2)2] (3), and [Co(L3)2]?·?H2O (4), derived from hydroxy-rich Schiff bases 2-{[1-(5-chloro-2-hydroxyphenyl)methylidene]amino}-2-methylpropane-1,3-diol (HL1), 2-{[1-(2-hydroxy-3-methoxyphenyl)methylidene]amino}-2-ethylpropane-1,3-diol (HL2), and 2-{[1-(5-bromo-2-hydroxyphenyl)methylidene]amino}-2-methylpropane-1,3-diol (HL3) have been synthesized and characterized by elemental analyses, infrared spectroscopy, and single-crystal X-ray determination. Each metal in the complexes is six-coordinate in a distorted octahedral coordination. The Schiff bases coordinate to the metal atoms through the imino N, phenolate O, and one hydroxyl O. In the crystal structures of HL1 and the complexes, molecules are linked through intermolecular O–H···O hydrogen bonds, forming 1-D chains. The urease inhibitory activities of the compounds were evaluated and molecular docking study of the compounds with the Helicobacter pylori urease was performed.  相似文献   

19.
The synthesis and crystal structure of {tris­[2‐(benzyl­amino)­ethyl]­amine‐κ4N}silver(I) perchlorate, [Ag(C27H36N4)]ClO4 or [Ag(bz3tren)]ClO4 {bz3tren is tris­[2‐(benzyl­amino)­ethyl]­amine or N,N′,N′′‐tri­benzyl­tris(2‐amino­ethyl)­amine} are reported. The Ag atom is coordinated to four N atoms of the tren unit and is located 0.604 (3) Å out of the trigonal plane described by the three secondary amine N atoms, away from the bridgehead N atom. Edge‐to‐face π–π interactions between the aromatic end groups, and weak interactions between Ag and arene, allow the formation of a pseudo‐cage complex.  相似文献   

20.
Two 2-D metal-organic coordination polymers, {[Ag(NH2–BPT)] · NO3} n (1) and {[Ag(BPT)] · H2O} n (2), have been synthesized via self-assembly of AgNO3 and 4-amino-3,5-bis(3-pyridyl)-1,2,4-triazole (NH2–BPT) under hydrothermal conditions by controlling the reaction temperatures. Lower reaction temperature (140°C) led to formation of 1, which crystallizes in the monoclinic system, space group C2/c, a = 24.001(3), b = 15.844(2), and c = 12.981(3) Å, V = 2996.8(6) Å3, Z = 8. When the temperature was increased to 180°C, in situ deaminization of the organic ligand led to crystallization of 2 (space group P21 /n, a = 7.3106(10), b = 19.633(2), and c = 9.0596(16) Å, V = 1190.2(3) Å3, Z = 4). The NH2–BPT in 1 and BPT in 2 are μ4 tetradentate utilizing two triazolyl and two pyridyl nitrogens, generating an unusual 2-D layer, in which binuclear Ag(I) motifs and organic ligands are four-connecting nodes that inter-link in 4462 topology. Adjacent 2-D metal-organic layers are linked by a system of hydrogen bonds to form 3-D supramolecular frameworks. Strong blue fluorescence emissions are observed for 1 and 2 in the solid state at ambient temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号