首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Three double-decker cyclophane receptors, (±)- 2 , (±)- 3 , and (±)- 4 with 11–13-Å deep hydrophobic cavities were prepared and their steroid-binding properties investigated in aqueous and methanolic solutions. Pd°-Catalyzed cross-coupling reactions were key steps in the construction of these novel macrotricyclic structures. In the synthesis of D2-symmetrical (±)- 2 , the double-decker precursor (±)- 7 was obtained in 14% yield by fourfold Stille coupling of equimolar amounts of bis(tributylstannyl)acetylene with dibromocyclophane 5 (Scheme 1). For the preparation of the macrotricyclic precursor (±)- 15 of D2-symmetrical (±)- 3 , diiodocylophane 12 was dialkynylated with Me3SiC?CH to give 13 using the Sonogashira cross-coupling reaction; subsequent alkyne deprotection yielded the diethynylated cyclophane 14 , which was transformed in 42% yield into (±)- 15 by Glaser-Hay macrocyclization (Scheme 2). The synthesis of the C2-symmetrical conical receptor (±)- 4 was achieved via the macrotricyclic precursor (±)- 25 , which was prepared in 20% yield by the Hiyama cross-coupling reaction between the diiodo[6.1.6.1]paracyclophane 19 and the larger, dialkynylated cyclophane 17 (Scheme 4). Solid cholesterol was efficiently dissolved in water through complexation by (±)- 2 and (±)- 3 , and the association constants of the formed 1:1 inclusion complexes were determined by solid-liquid extraction as Ka = 1.1 × 106 and 1.5 × 105 l mol?1, respectively (295 K) (Table 1). The steroid-binding properties of the three receptors were analyzed in detail by 1H-NMR binding titrations in CD3OD. Observed steroid-binding selectivities between the two structurally closely related cylindrical receptors (±)- 2 and (±)- 3 (Table 2) were explained by differences in cavity width and depth, which were revealed by computer modeling (Fig. 4). Receptor (±)- 2 , with two ethynediyl tethers linking the two cyclophanes, possesses a shallower cavity and, therefore, is specific for flatter steroids with a C(5)?C(6) bond, such as cholesterol. In contrast, receptor (±)- 3 , constructed with longer buta-1,3-diynediyl linkers, has a deeper and wider hydrophobic cavity and prefers fully saturated steroids with an aliphatic side chain, such as 5α-cholestane (Fig. 7). In the 1:1 inclusion complexes formed by the conical receptor (±)- 4 (Table 3), testosterone or progesterone penetrate the binding site from the wider cavity side, and their flat A ring becomes incorporated into the narrower [6.1.6.1]paracyclophane moiety. In contrast, cholesterol penetrates (±)- 4 with its hydrophobic side chain from the wider rim of the binding side. This way, the side chain is included into the narrower cavity section shaped by the smaller [6.1.6.1]paracyclophane, While the A ring protrudes with the OH group at C(3) into the solvent on the wider cavity side (Fig. 8). The molecular-recognition studies with the synthetic receptors (±)- 2 , (±)- 3 , and (±)- 4 complement the X-ray investigations on biological steroid complexes in enhancing the understanding of the principles governing selective molecular recognition of steroids.  相似文献   

2.
Reactions of [2N]cyclophanes (N = 2, ?6) with solvated electrons in 1,2-di-methoxyethane at 193 K have been studied by ESR. and ENDOR. spectroscopy. All but the two most highly bridged cyclophanes (N = 5 and 6) are reduced to paramagnetic species under these conditions. Whereas the radical anions of [2.2]-paracyclophane and [23](1,2,4)- and [24](l,2,4,5)cyclophanes are sufficiently persistent to be characterized by their hyperfine data, those of the remaining five cyclophanes undergo a rapid cyclization to the radical anions of 4,5,9,10-tetrahydropyrenes. These have been identified as the unsubstituted tetrahydropyrene (from [2.2]-metacyclophane and [23](l,2,3)cyclophane), the 2,7-dimethyl-derivative (from [23](1,3,5)- and [24](l,2,3,5)cyclophanes) and the 1,8-dimethyl-derivative (from (24l,2,3,4)cyclophane). The persistence of the cyclophane radical anions seems to depend on the numbers, nmeta and npara, of the meta-and para-positions of the bridging ethano groups in the two benzene rings. The prerequisite for the radical anion to be persistent is nmeta?npara.  相似文献   

3.
The novel H2O-soluble cyclophanes 1 and 2 incorporating different anion-recognition sites were prepared in short synthetic routes (Schemes 1 and 2) as first-generation mimics of the natural, D -Ala-D -Ala binding antibiotic vancomycin. The X-ray crystal structure of 1 , a tris(hydrochloride)salt, revealed an open, preorganized cavity of sufficient size for the incorporation of small aliphatic residues (Fig. 3). In the crystal, molecules of 1 are arranged in parallel stacks, generating two types of channels, an ‘intra-stack’ channel passing through the cyclophane cavities and an ‘inter-stack’ channel located between cyclophane stacks (Fig. 4). The strongest intermolecular interactions between macrocycles in the crystal are C?O…?H? N H-bonds between the carboxamide residues of adjacent cyclophanes in neighboring stacks (Fig. 5). The ‘intra-’ and ‘inter-stack’ channels incorporate the three ordered Cl? counterions and several, partially ordered solvent molecules (4 MeOH, 1 H2O) (Fig. 6). Counterion Cl(2) is located within the ‘intra-stack’ channel and interacts with a protonated piperazinium N-atom and both ‘intra-stack’ MeOH molecules. The two other counterions, Cl(1) and Cl(3), are located within the ‘inter-stack’ channel. They are connected to two MeOH and one H2O molecules and also interact both with the NH group of the protonated spiropiperidinium ring in 1 , forming an infinite, chain-like H-bonding network …?Cl(1)…?HOH…?MeOH…?Cl(3)…?HNH…?Cl(1′)…?. Both ‘intra-’ and ‘inter-stack’ MeOH molecules undergo weak CH…?π interactions with neighboring aromatic rings. Cyclophane 1 complexed aromatic sulfonates in 0.5M KCl/DCl buffer in D2O, whereas the tetrakis(quaternary ammonium) receptor 2 bound the sodium salts of aliphatic and aromatic carboxylates and sulfonates, of N-acylated α-amino acids as well as of N-acetyl-D -alanyl-D -alanine (Ac-D -Ala-D -Ala), a substrate of vancomycin, in pure H2O. In all of these complexes, ion pairing between the cationic recognition site in the periphery of the cyclophane receptor and the anionic substrates represents the major driving force for host-guest association. The 1H-NMR analysis of complexation-induced changes in chemical shift clearly demonstrated that, in solution, this ion pairing exclusively takes place outside the cavity. Nevertheless, the macrocyclic bridges are essential for the efficiency of the anion-recognition sites in the two cyclophane receptors 1 and 2 . Control compounds 3 and 4 possess nearly the same anion-recognition sites than 1 and 2 , but lack their macrocyclic preorganization; as a consequence, they do not form stable ion-pairing complexes with mono-anionic substrates in the considered concentration ranges ( < 50 mM ) in D2O.  相似文献   

4.
Since the discovery of the crown ethers by Pedersen twenty years ago, the chemistry of synthetic hosts for the selective complexation of organic and inorganic guests has seen an extraordinarily rapid development. This article discusses in particular the contributions provided by synthetic cyclophanes as hosts to the understanding of molecular complexation of neutral organic guest molecules in aqueous and organic solvents. In aqueous solution, cyclophanes form stoichiometric complexes with neutral aromatic guests which can approach enzyme-substrate complexes in their stability. Efficient molecular complexation is also observed in organic environments. Here, as a result of large solvation effects, the strength of complexation is strongly dependent on the nature of the organic solvent. Electron donor-acceptor interactions can contribute significantly to the stability of complexes formed between cyclophane hosts and aromatic guests. Force-field calculations together with computer graphics are powerful tools in the design of water-soluble, optically active hosts for chiral recognition of complexed racemic guests. Simple and selective functionalization of the cyclophane framework leads to stable, bioorganic catalysts. Like enzymes, these catalysts bind their substrates in a rapid equilibrium prior to the reaction steps. As a perspective, some fascinating research objectives in the field of molecular recognition and catalysis which can be targeted with designed cyclophane hosts are shown.  相似文献   

5.
A series of symmetrical tri‐ and tetrameric N‐ethyl‐ and N‐phenylurea‐functionalized cyclophanes have been prepared in nearly quantitative yields (86–99 %) from the corresponding tri‐ and tetraamino‐functionalized piperazine cyclophanes and ethyl or phenyl isocyanates. Their conformational and complexation properties have been studied by single‐crystal X‐ray diffraction, variable‐temperature NMR spectroscopy, and ESI‐MS analysis. The rigid 27‐membered trimeric cyclophane skeleton assisted by a seam of intramolecular hydrogen bonds results in a preorganized ditopic recognition site with an all‐syn conformation of the urea moieties that, complemented by a lipophilic cavity of the cyclophane, binds molecular and ionic guests as well as ion pairs. The all‐syn conformation persists in acidic conditions and the triprotonated triurea cyclophane binds an unprecedented anion pair, H2PO4????HPO42?, in the solid state. The tetra‐N‐ethylurea cyclophane is less rigid and demonstrates an induced‐fit recognition of diisopropyl ether in the solid state. The guest was encapsulated within the lipophilic interior of a quasicapsule, formed by intramolecular hydrogen‐bond‐driven folding of the 36‐membered cyclophane skeleton. In the gas phase, the essential role of the urea moieties in the binding was demonstrated by the formation of monomeric 1:1 complexes with K+, TMA+, and TMP+ as well as the ion‐pair complexes [KI+K]+, [TMABr+TMA]+ and [TMPBr+TMP]+. In the positive‐mode ESI‐MS analysis, ion‐pair binding was found to be more pronounced with the larger tetraurea cyclophanes. In the negative mode, owing to the large size of the binding site, a general binding preference towards larger anions, such as the iodide, over smaller anions, such as the fluoride, was observed.  相似文献   

6.
New cyclophanes containing two imidazole-2-thione moieties linked by two xylylene groups have been synthesized by the reaction of imidazolium-linked cyclophanes with sulfur in the presence of K2CO3. The conformational behaviour of the new cyclophanes was explored by NMR spectroscopy and X-ray diffraction studies. In cyclophanes containing o-xylylene or 2,4,6-trimethyl-m-xylylene linking groups, the imidazole-2-thione groups were mutually syn in both the solid state and in solution, the cyclophanes adopting a conformation reminiscent of the cone conformation of calix[4]arenes. Cyclophanes containing p-xylylene or m-xylylene linking groups exhibited two conformations in solution, one in which the imidazole-2-thione groups are mutually syn, the other in which they are mutually anti, and these conformations did not interconvert on the NMR timescale. Both conformations co-crystallised in the m-xylylene linked cyclophane, while for the p-xylylene-linked cyclophane the anti conformation crystallised separately.  相似文献   

7.
A rigid, covalently linked perylene‐3,4:9,10‐tetracarboxylic acid bisimide (PBI) cyclophane was synthesized by imidization of a bay‐substituted perylene bisanhydride with p‐xylylenediamine. The interchromophoric distance of approximately 6.5 Å establishes an ideal rigid cavity for the encapsulation of large aromatic compounds such as perylene and anthracene with binding constants up to 4.6×104 M ?1 (in CHCl3). For electron‐poor guest molecules, the complexation process is accompanied by a significantly increased fluorescence, whereas the emission intensity is dramatically quenched by more electron‐rich guests because of the formation of charge‐transfer complexes. Furthermore, the influence of the PBI core twist on the binding constant results in a remarkable selectivity towards more flexible aromatic guest molecules.  相似文献   

8.
The complexation between the double-decker cyclophane (±)- 1 and a series of 30 steroids was investigated in CD3OD by 1H-NMR titrations. The geometries of the complexes, in which the substrates are axially included in the 13-Å deep and 9 Å×12 Å wide receptor cavity, were estimated based on the complexation-induced changes in chemical shift (CIS) of the steroidal Me group resonances. Computer modeling provided additional support for the geometries deduced from the experimental data. The log P (octanol/H2O) values of the steroids were determined experimentally by HPLC or calculated using the program CLOGP. Although steroids with a high log P form some of the most stable complexes with (±)- 1 , a general correlation between the thermodynamic driving force for association −ΔG0 and the partition coefficient was not observed. It can, therefore, be concluded that inclusion complexation is not only driven by the preference of the steroid to transfer from the polar solvent into the lipophilic binding cavity but also by specific host-guest interactions. A series of structure-function relationships was revealed. i) Steroids with an isoprenoidal side chain at C(17) form some of the most stable complexes (−ΔG0 up to 4.8 kcal mol−1), with side-chain encapsulation contributing as much as 1.2 kcal mol−1 to the association strength. In these complexes, the receptor is slipping in a dynamic process over both the tetracyclic core and the lipophilic side chain. ii) Pregnane derivatives, which lack the isoprenoidal side chain, are tightly encapsulated with their tetracyclic core. Upon introduction of double bonds, the core flattens, and binding affinity drops substantially. iii) The presentation of steroidal OH groups to the receptor cavity is accompanied by energetically unfavorable functional-group desolvation, which strongly reduces the host-guest binding affinity. In contrast, inclusion of steroidal carboxylate or keto groups into the cavity does not substantially change complexation strength as compared to the unsubstituted derivatives. iv) Addition of extra Me groups to the steroidal A ring does not have a large effect on the association strength; however, complex geometries may change significantly. v) Receptor (±)- 1 shows a remarkably high affinity towards progesterone (−ΔG0=4.7 kcal mol−1) despite the low log P value (3.87) of this steroid. Small changes in the progesterone structure lead to large reductions in complex stability, which clearly demonstrates that the double-decker cyclophane is a selective molecular receptor.  相似文献   

9.
Cyclophanes 3 and 4 were prepared as initiator cores for the construction of dendrophanes (dendritic cydophanes) 1 and 2 , respectively, which mimic recognition sites buried in globular proteins. The tetra-oxy[6.1.6.1]paracyclophane 3 was prepared by a short three-step route (Scheme 1) and possesses a cavity binding site shaped by two diphenylmethane units suitable for the inclusion of flat aromatic substrates such as benzene and naphthalene derivatives as was shown by 1H-NMR binding titrations in basic D2O phosphate buffer (Table 1). The larger cyclophane 4 , shaped by two wider naphthyl(phenyl)methane spacers, was prepared in a longer, ten-step synthesis (Scheme 2) which included as a key intermediate the tetrabromocyclophane 5 . 1H-NMR Binding studies in basic borate buffer in D2O/CD3OD demonstrated that 4 is an efficient steroid receptor. In a series of steroids (Table 1), complexation strength decreased with increasing substrate polarity and increasing number of polar substituents; in addition, electrostatic repulsion between carboxylate residues of host and guest also affected the binding affinity strongly. The conformationally flexible tetrabromocyclophane 5 displayed a pronounced tendency to form solid-state inclusion compounds of defined stoichiometry, which were analyzed by X-ray crystallography (Fig. 2). 1,2-Dichloroethane formed a cavity inclusion complex 5a with 1:1 stoichiometry, while in the 1:3 inclusion compound 5b with benzene, one guest is fully buried in the macrocyclic cavity and two others are positioned in channels between the Cyclophanes in the crystal lattice. In the 1:2 inclusion compound 5c , two toluene molecules penetrate with their aromatic rings the macrocyclic cavity from opposite sides in an antiparallel fashion. On the other hand, p-xylene (= 1,4-dimethylbenzene) in the 1:1 compound 5d is sandwiched between the cyclophane molecules with its two Me groups penetrating the cavities of the two macrocycles. In the 1:2 inclusion compound 5e with tetralin (= 1,2,3,4-tetrahydronaphthalene), both host and guest are statically disordered. The shape of the macrocycle in 5a – e depends strongly on the nature of the guest (Fig. 4). Characteristic for these compounds is the pronounced tendency of 5 to undergo regular stacking and to form channels for guest inclusion; these channels can infinitely extend across the macrocyclic cavities (Fig. 6) or in the crystal lattice between neighboring cyclophane stacks (Fig. 5). Also, the crystal lattice of 5c displays a remarkable zig-zag pattern of short Br…?O contacts between neighboring macrocycles (Fig. 7).  相似文献   

10.
The new [3+3] NH-CH2 bridged cyclophanes bearing different functional groups and different cavity sizes were prepared in one pot by treating diamine derivatives with dialdehyde derivatives. Factors important for efficiently form-ing these macrocycles include reaction concentration (10 or 100?mmol), temperature (room temperature or 40–50?°C) and solvent (CHCl3). Preliminary fluorescence spectrometer and HRMS-ESI studies demonstrated the inner cavity of the new [3+3] NH-CH2 bridged cyclophanes bearing three hydroxyl groups (3c) as a new highly selective probe for the naked eye detection of Ag+ in PBS buffer.  相似文献   

11.
Resorcinarene‐based cavitands 1a – c fold into a deep open‐ended cavity by means of intramolecular hydrogen bonds in both apolar solutions and the solid state. The X‐ray crystal‐structure analysis of cavitand 1a features a seam of secondary amide C=O⋅⋅⋅H−N interactions that bridge adjacent rings and are held in place by intra‐annular hydrogen bonds. This results in a cavity of 9.2×7.0 Å dimensions. The arrangement of the amides in 1a – 1c is cycloenantiomeric, with clock‐ and counterclockwise orientation of the head‐to‐tail amide sequence. Interconversion rates of the two enantiomers are controlled by solvent polarity: the rate is slow on the NMR time‐scale in aromatic solvents and CDCl3, but fast in (D6)acetone. The 1H‐ and 13C‐NMR‐spectral analysis is in agreement with the crystallographic data. Chiral cavitand 1b with eight HN−C(O)−C*HMeEt ((+)‐(S)) groups on its upper rim exists as two cyclodiastereoisomers (in a ca. 3 : 1 ratio) in apolar solution. A `library' of 512 diastereoisomeric cavitands 1c is obtained as a mixture by using the corresponding racemic acid chloride.  相似文献   

12.
A new family of optically active cyclophane receptors for the complexation of mono‐ and disaccharides in competitive protic solvent mixtures is described. Macrocycles (−)‐(R,R,R,R)‐ 1 – 4 feature preorganized binding cavities formed by four 1,1′‐binaphthalene‐2,2′‐diyl phosphate moieties bridged in the 3,3′‐positions by acetylenic or phenylacetylenic spacers. The four phosphodiester groups converge towards the binding cavity and provide efficient bidentate ionic H‐bond acceptor sites (Fig. 2). Benzyloxy groups in the 7,7′‐positions of the 1,1′‐binaphthalene moieties ensure solubility of the nanometer‐sized receptors and prevent undesirable aggregation. The construction of the macrocyclic framework of the four cyclophanes takes advantage of Pd0‐catalyzed aryl—acetylene cross‐coupling by the Sonogashira protocol, and oxidative acetylenic homo‐coupling methodology (Schemes 2 and 8 – 10). Several cleft‐type receptors featuring one 1,1′‐binaphthalene‐2,2′‐diyl phosphate moiety were also prepared (Schemes 1, 6, and 7). An undesired side reaction encountered during the synthesis of the target compounds was the formation of naptho[b]furan rings from 3‐ethynylnaphthalene‐2‐ol derivatives, proceeding via 5‐endo‐dig cyclization (Schemes 35). Computer‐assisted molecular modeling indicated that the macrocycles prefer nonplanar puckered, cyclobutane‐type conformations (Figs. 7 and 8). According to these calculations, receptor (−)‐(R,R,R,R)‐ 1 has, on average, a square binding site, which is complementary in size to one monosaccharide. The three other cyclophanes (−)‐(R,R,R,R)‐ 2 – 4 feature, on average, wider rectangular cavities, providing a good fit to one disaccharide, while being too large for the complexation of one monosaccharide. This substrate selectivity was fully confirmed in 1H‐NMR binding titrations. The chiroptical properties of the cyclophanes and their nonmacrocyclic precursors were investigated by circular dichroism (CD) spectroscopy. The CD spectra of the acyclic precursors showed a large dependence from the number of 1,1′‐binaphthalene moieties (Fig. 9), and those of the cyclophanes were remarkably influenced by the nature of the functional groups lining the macrocyclic cavity (Fig. 11). Profound differences were also observed between the CD spectra of linear and macrocyclic tetrakis(1,1′‐binaphthalene) scaffolds, which feature very different molecular shapes (Fig. 10). In 1H‐NMR binding titrations with mono‐ and disaccharides (Fig. 13), concentration ranges were chosen to favor 1 : 1 host−guest binding. This stoichiometry was experimentally established by the curve‐fitting analysis of the titration data and by Job plots. The titration data demonstrate conclusively that the strength of carbohydrate recognition is enhanced with an increasing number of bidentate ionic host−guest H‐bonds (Table 1) in the complex formed. As a result of the formation of these highly stable H‐bonds, carbohydrate complexation in competitive protic solvent mixtures becomes more favorable. Thus, cleft‐type receptors (−)‐(R)‐ 7 and (−)‐(R)‐ 38 with one phosphodiester moiety form weak 1 : 1 complexes only in CD3CN. In contrast, macrocycle (−)‐(R,R,R,R)‐ 1 with four phosphodiester groups undergoes stable inclusion complexation with monosaccharides in CD3CN containing 2% CD3OD. With their larger number of H‐bonding sites, disaccharide substrates bind even more strongly to the four phosphodiester groups lining the cavity of (−)‐(R,R,R,R)‐ 2 and complexation becomes efficient in CD3CN containing 12% CD3OD. Finally, the introduction of two additional methyl ester residues further enhances the receptor capacity of (−)‐(R,R,R,R)‐ 3 , and efficient disaccharide complexation occurs already in CD3CN containing 20% CD3OD.  相似文献   

13.
A cyclophane is reported incorporating two units of a heptagon-containing extended polycyclic aromatic hydrocarbon (PAH) analogue of the hexa-peri-hexabenzocoronene (HBC) moiety (hept-HBC). This cyclophane represents a new class of macrocyclic structures that incorporate for the first time seven-membered rings within extended PAH frameworks. The saddle curvature of the hept-HBC macrocycle units induced by the presence of the nonhexagonal ring along with the flexible alkyl linkers generate a cavity with shape complementarity and appropriate size to enable π interactions with fullerenes. Therefore, the cyclophane forms host–guest complexes with C60 and C70 with estimated binding constants of Ka=420±2 m −1 and Ka=(6.49±0.23)×103 m −1, respectively. As a result, the macrocycle can selectively bind C70 in the presence of an excess of a mixture of C60 and C70.  相似文献   

14.
A cyclophane is reported incorporating two units of a heptagon‐containing extended polycyclic aromatic hydrocarbon (PAH) analogue of the hexa‐peri‐hexabenzocoronene (HBC) moiety (hept‐HBC). This cyclophane represents a new class of macrocyclic structures that incorporate for the first time seven‐membered rings within extended PAH frameworks. The saddle curvature of the hept‐HBC macrocycle units induced by the presence of the nonhexagonal ring along with the flexible alkyl linkers generate a cavity with shape complementarity and appropriate size to enable π interactions with fullerenes. Therefore, the cyclophane forms host–guest complexes with C60 and C70 with estimated binding constants of Ka=420±2 m ?1 and Ka=(6.49±0.23)×103 m ?1, respectively. As a result, the macrocycle can selectively bind C70 in the presence of an excess of a mixture of C60 and C70.  相似文献   

15.
The crystal structure of [C10N2H10]2[P2Mo5O21(OH)2] · 2H2O, contains the heteropolyanion, [P2Mo5O21(OH)2]4—, together with diprotonated 4, 4′‐bipyridine. The heteropolyanion is built up from five MoO6 octahedra sharing four common edges and one common corner, capped by two PO3(OH) tetrahedra. The structure is stabilized by hydrogen bonds involving the hydrogen atoms of the 4, 4′‐bipyridine, water molecules and the oxygen atoms of the pentamolybdatobisphosphate. This is the first example that this kind of cluster could be isolated in the presence of a poly‐functional aromatic molecule ion. Crystal data: triclinic, P1¯ (No. 2), a = 9.983(2)Å, b = 11.269(2)Å, c = 17.604(4)Å, α = 73.50(3)°, β = 84.07(3)°, γ = 67.96(3)°; V = 1760.0(6)Å3; Z = 2; R1 = 0.037 and wR2 = 0.081, for 9138 reflections [I > 2σ(I)].  相似文献   

16.
A few novel anthracene-based cyclophanes CP-1 , CP-2 and CP-3 were synthesized and their interactions with DNA were investigated employing photophysical and biophysical techniques. In methanol and acetonitrile, these systems exhibited optical properties characteristic of the anthracene chromophore. However, in the aqueous medium, the symmetric cyclophane CP-1 showed a dual emission having λmax at 430 and 550 nm, due to the monomer and excimer, respectively. In contrast, the cyclophanes CP-2 and CP-3 in the aqueous medium showed structured anthracene absorption and emission spectra similar to those obtained in methanol and acetonitrile. DNA binding studies indicate that CP-1 undergoes efficient nonclassical partial intercalative interactions with DNA resulting in the exclusive formation of a sandwich-type excimer having enhanced emission intensity and lifetimes. The cyclophane CP-2 having one anthracene moiety exhibited nonclassical intercalative binding with DNA, albeit with less efficiency compared with CP-1 . In contrast, CP-3 , having sterically bulky viologen bridging group showed DNA electrostatic as well as groove binding interactions. These results demonstrate that the nature of the bridging unit plays an important role in the binding mode of the cyclophanes with DNA and in the formation of the novel sandwich-type excimer.  相似文献   

17.
Three neutral cyclophanes were synthesized, and their association with indole, an aromatic pi-donor, was studied. The cyclophanes were designed to contain a rigid, hydrophobic binding cavity with 1,4,5,8-naphthalenetetracarboxylic diimide or 1,5-dinitronaphthalene as the pi-acceptor. Two of the cyclophanes also contain a (S)-(valine-leucine-alanine) tripeptide unit to provide chiral hydrogen bonding interactions with guest molecules. Despite the fact that these cyclophanes contain a hydrophobic binding cavity of appropriate dimensions, their association with indole is very weak. In the case of cyclophanes derived from 1,5-dinitronaphthalene, steric interactions force the nitro groups out of the plane of the naphthalene ring, diminishing their effectiveness as pi-acceptors. A simple UV--visible titrimetric method, using N,N,N',N'-tetramethyl-1,4-phenylenediamine (TMPD) as a pi-donor, was used to rank the pi-acceptor strength of these and other aromatic units. These titrations show that 1,4,5,8-naphthalenetetracarboxylic diimide and 1,5-dinitronaphthalene derivatives are weaker pi-acceptors than viologens, which make good pi-acceptor cyclophanes. Methyl viologen is in turn a weaker pi-acceptor than anthaquinone disulfonate, suggesting that the latter may serve as a useful building block for pi-accepting cyclophane hosts.  相似文献   

18.
A series of donor–acceptor [2]‐, [3]‐, and [4]rotaxanes and self‐complexes ([1]rotaxanes) have been synthesized by a threading‐followed‐by‐stoppering approach, in which the precursor pseudorotaxanes are fixed by using CuI‐catalyzed Huisgen 1,3‐dipolar cycloaddition to attach the required stoppers. This alternative approach to forming rotaxanes of the donor–acceptor type, in which the donor is a 1,5‐dioxynaphthalene unit and the acceptor is the tetracationic cyclophane cyclobis(paraquat‐p‐phenylene), proceeds with enhanced yields relative to the tried and tested synthetic strategies, which involve the clipping of the cyclophane around a preformed dumbbell containing π‐electron‐donating recognition sites. The new synthetic approach is amenable to application to highly convergent sequences. To extend the scope of this reaction, we constructed [2]rotaxanes in which one of the phenylene rings of the tetracationic cyclophane is perfluorinated, a feature which significantly weakens its association with π‐electron‐rich guests. The activation barrier for the shuttling of the cyclophane over a spacer containing two triazole rings was determined to be (15.5±0.1) kcal mol?1 for a degenerate two‐station [2]rotaxane, a value similar to that previously measured for analogous degenerate compounds containing aromatic or ethylene glycol spacers. The triazole rings do not seem to perturb the shuttling process significantly; this property bodes well for their future incorporation into bistable molecular switches.  相似文献   

19.
Three cyclophanes, each displaying a different type of dynamic process, have been studied by NMR methods. The barriers to these processes are attributed mainly to the decrease in π-electron overlap between the benzene rings and adjacent double bonds which occurs in the transition state for each process. In [52] paracyclophanetetraene, two successive flippings of the benzene rings interconvert the two hydrogens in the methylene groups (Scheme 1). In tetramethyl [24] paracyclophanetetraene, the passage of one methyl group through the central cavity of the molecule interconverts two conformations of similar, but not equal, free energy (Scheme 2). In [26] orthoparacyclophanehexaene, the orthosubstituted rings change sides by passing through the centre of the cyclophane (Scheme 3).  相似文献   

20.
Steroid cyclophanes, bearing four bile acid moieties covalently placed on a tetraazaparacyclophane skeleton, were designed and synthesized as artificial cell-surface receptors. Guest-binding behavior of the steroid cyclophanes embedded in a bilayer membrane formed with a synthetic peptide lipid was clarified by means of fluorescence and circular dichroism spectroscopy. We found that the steroid cyclophane effectively bound aromatic guests in both bilayer membranes and aqueous solution. In addition, copper(II) ions acted as a guest species for the steroid cyclophane and a competitive inhibitor toward a NADH-dependent lactate dehydrogenase (LDH). On these grounds, we constituted a supramolecular assembly as an artificial signaling system in combination with the steroid cyclophane, a cationic peptide lipid, and LDH. As a consequence, the steroid cyclophane acted as an effective artificial cell-surface receptor being capable of transmitting an external signal to the enzyme in collaboration with copper(II) ions as a signal transmitter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号