首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The unimolecular decomposition of but-1-yne has been investigated over the temperature range of 1052° – 1152°K using the technique of very low-pressure pyrolysis (VLPP). The primary process is C? C bond fission yielding methyl and propargyl radicals. Application of RRKM theory shows that the experimental rate constants are consistent with the highpressure Arrhenius parameters given by where θ = 2.303 RT kcal/mol. The parameters are in good agreement with estimates based on shock-tube studies. The activation energy, combined with thermochemical data, leads to DH°[HCCCH2? CH3] = 76.0, ΔH(HCC?CH2,g) = 81.4, and DH° [HCCCH2? H] = 89.2, all in kcal/mol at 300°K. The stabilization energy of the propargyl radical SE° (HCC?CH2) has been found to be 8.8 kcal/mol. Recent result for the shock-tube pyrolysis of some alkynes have been analyzed and shown to yield values for the heat of formation and stabilization energy of the propargyl radical in excellent agreement with the present work. From a consideration of all results it is recommended that ΔH(HCC?CH2,g) = 81.5±1.0, DH[HCCCH2? H] = 89.3 ± 1.0, and SE° (HCC?CH2) = 8.7±1.0 kcal/mol.  相似文献   

2.
The I2-catalyzed isomerization of allyl chloride to cis- and trans- l-chloro-l-propene was measured in a static system in the temperature range 225–329°C. Propylene was found as a side product, mainly at the lower temperatures. The rate constant for an abstraction of a hydrogen atom from allyl chloride by an iodine atom was found to obey the equation log [k,/M?1 sec?1] = (10.5 ± 0.2) ?; (18.3 ± 10.4)/θ, where θ is 2.303RT in kcal/mole. Using this activation energy together with 1 ± 1 kcal/mole for the activation energy for the reaction of HI with alkyl radicals gives DH0 (CH2CHCHCl? H) = 88.6 ± 1.1 kcal/mole, and 7.4 ± 1.5 kcal/mole as the stabilization energy (SE) of the chloroallyl radical. Using the results of Abell and Adolf on allyl fluoride and allyl bromide, we conclude DH0 (CH2CHCHF? H) = 88.6 ± 1.1 and DH0 (CH2CHCHBr? H) = 89.4 ± 1.1 kcal/ mole; the SE of the corresponding radicals are 7.4 ± 2.2 and 7.8 ± 1.5 kcal/mole. The bond dissociation energies of the C? H bonds in the allyl halides are similar to that of propene, while the SE values are about 2 kcal/mole less than in the allyl radical, resulting perhaps more from the stabilization of alkyl radicals by α-halogen atoms than from differences in the unsaturated systems.  相似文献   

3.
The kinetics of the thermal unimolecular decompositions of N-methyl aniline and N,N-dimethyl aniline into anilino and N-methyl anilino radicals, respectively, have been studied under very low-pressure conditions. The enthalpies of formation of both radicals, ΔH°f,298°K(Ph?H,g) = 55.1 and ΔH°f,298°K(Ph?Me,g) = 53.2 kcal/mol, which have been derived from the experimental data, lead to BDE(PhNH-H) = 86.4 ± 2, BDE[PhN(Me)-H] = 84.9 ± 2 kcal/mol and to a value of 16.4 kcal/mol for the stabilization energy of the PhNH radical (relative to MeNH). These results are discussed in connection with earlier work. At high temperatures, the anilino radical loses HNC and forms the very stable cyclopentadienyl radical, a decomposition comparable to that of the phenoxy radical.  相似文献   

4.
The kinetics and equilibria in the system Br + t-BuO2H ? HBr + t-BuO2· have been measured in the range of 300–350 K using the very low pressure reactor (VLPR) technique. Using an estimated entropy change in reaction (1) ΔS1 = 3.0 ± 0.4 cal/mol·K together with the measured ΔG1, we find ΔH1 = 1.9 ± 0.2 kcal/mol and DHº (t-BuO2-H) = 89.4 ± 0.2 kcal/mol ΔHf·(tBuO2·) = 20.7 kcal/mol and DHº (t-Bu-O2) = 29.1 kcal/mol. The latter values make use of recent values of ΔHf·(t-Bu) = 8.4 ± 0.5 kcal/mol and the known thermochemistry of the other species. The activation energy E1 is found to be 3.3 ± 0.6 kcal/mol, about 1 kcal lower than the value found for Br attack on H2O2. It suggests a bond 1 kcal stronger in H2O2 than in tBuO2H.  相似文献   

5.
The thermal, unimolecular elimination of HF from CH3CF3 was studied by three different groups over the temperature range 1000° to 1800°K. While the reported kinetic parameters varied greatly, it is shown here that these data may be satisfactorily correlated in terms of a four-center transition state. This correlation results in ΔE = 69.2 kcal/mol, and log (k/s?1) = 14.6 – 72.6/θ. These results may then be combined with the kinetics of the chemically activated elimination of HF from CH3CF3 formed by the recombination of methyl and trifluoromethyl radicals. The data from three different laboratories are shown to be in excellent agreement. These data, combined with extant thermal data, yield as a best value DH(CH3? CF3) = 99.6 ± 1.1 kcal/mol. This gives the unexpectedly high value of DH298°(CH3? CF3) = 101.2 ± 1.1 kcal/mol. It is suggested that dipoledipole interactions, primarily in CH3CF3, account for this surprisingly strong C? C bond dissociation energy. These results also yield δH(CH3CF3; g, 298) = ?178.6 ± 1.5 kcal/mol.  相似文献   

6.
The structures of α-X-cyclopropyl and α-X-isopropyl radicals (X = H, CH3, NH2, OH, F, CN, and NC) are reported at the RHF 3-21G level of theory. The isopropyl radicals are pyramidal with out-of-plane angles varying from 12° (X = CN) to 39° (X = NH2), and barriers to inversion ranging from 0.4 kcal/mol (X = H) to 4.0 kcal/mol (X = NH2). The cyclopropyl radicals have larger out-of-plane angles, from 39.9° (X = CN) to 49.4° (X = NH2), and their barriers to inversion, which increase with the inclusion of polarization functions, vary from 5.5 kcal/mol (X = H) to 16.7 kcal/mol (X = F). In both types of radicals the amino group is the most stabilizing substituent, while the α-fluoro has little effect. The β-fluoro group is weakly destabilizing in the cyclopropyl radical. The strain energies of the cyclopropyl radicals (36–43 kcal/mol) are compared with those of similarly substituted anions, cations, and cyclopropanes.  相似文献   

7.
The kinetics and mechanisms of the unimolecular decompositions of phenyl methyl sulfide (PhSCH3) and benzyl methyl sulfide (PhCH2SCH3) have been studied at very low pressures (VLPP). Both reactions essentially proceed by simple carbon-sulfur bond fission into the stabilized phenylthio (PhS·) and benzyl (PhCH2·) radicals, respectively. The bond dissociation energies BDE(PhS-CH3) = 67.5 ± 2.0 kcal/mol and BDE(PhCH2-SCH3) = 59.4 ± 2 kcal/mol, and the enthalpies of formation of the phenylthio and methylthio radicals ΔH° ,298K(PhS·, g) = 56.8 ± 2.0 kcal/mol and ΔH°f, 298K(CH3S·, g) = 34.2 ± 2.0 kcal/mol have been derived from the kinetic data, and the results are compared with earlier work on the same systems. The present values reveal that the stabilization energy of the phenylthio radical (9.6 kcal/mol) is considerably smaller than that observed for the related benzyl (13.2 kcal/mol) and phenoxy (17.5 kcal/mol) radicals.  相似文献   

8.
The kinetics and mechanism of the reaction between iodine and dimethyl ether (DME) have been studied spectrophotometrically from 515–630°K over the pressure ranges, I2 3.8–18.9 torr and DME 39.6–592 torr in a static system. The rate-determining step is, where k1 is given by log (k1/M?1 sec?1) = 11.5 ± 0.3 – 23.2 ± 0.7/θ, with θ = 2.303RT in kcal/mole. The ratio k2/k?1, is given by log (k2/k?1) = ?0.05 ± 0.19 + (0.9 ± 0.45)/θ, whence the carbon-hydrogen bond dissociation energy, DH° (H? CH2OCH3) = 93.3 ± 1 kcal/mole. From this, ΔH°f(CH2OCH3) = ?2.8 kcal and DH°(CH3? OCH2) = 9.1 kcal/mole. Some nmr and uv spectral features of iodomethyl ether are reported.  相似文献   

9.
The unimolecular decomposition of 3,3-dimethylbut-1-yne has been investigated over the temperature range of 933°-1182°K using the technique of very low-pressure pyrolysis (VLPP). The primary process is C? C bond fission yielding the resonance stabilized dimethylpropargyl radical. Application of RRKM theory shows that the experimental unimolecular rate constants are consistent with the high-pressure Arrhenius parameters given by log (k/sec?1) = (15.8 ± 0.3) - (70.8 ± 1.5)/θ where θ = 2.303RT kcal/mol. The activation energy leads to DH0[(CH3)2C(CCH)? CH3] = 70.7 ± 1.5, θH0f((CH3)2?CCH,g) = 61.5 ± 2.0, and DH0[(CH3)2C(CCH)? H] = 81.0 ± 2.3, all in kcal/mol at 298°K. The stabilization energy of the dimethylpropargyl radical has been found to be 11.0±2.5 kcal/mol.  相似文献   

10.
The thermal unimolecular decomposition of ethylbenzene, isopropylbenzene, and tert-butylbenzene was studied using the very-low-pressure pyrolysis (VLPP) technique. Each reactant decomposed by way of β C? C bond homolysis, producing methyl radicals and benzyl or benzylic-type radicals. RRKM calculations show that the observed rate constants, when combined with thermochemical estimates, are consistent with the following high-pressure rate expressions: \documentclass{article}\pagestyle{empty}\begin{document}$ \log k(\sec ^{ - 1}) = 15.3 - (72.7/{\rm \theta)} $\end{document} for ethylbenzene between 1053 and 1234 K, \documentclass{article}\pagestyle{empty}\begin{document}$ \log k(\sec ^{ - 1}) = 15.8 - (71.3/{\rm \theta)} $\end{document} for isopropylbenzene between 971 and 1151 K, and \documentclass{article}\pagestyle{empty}\begin{document}$ \log k(\sec ^{ - 1}) = 15.9 - (69.1/{\rm \theta)} $\end{document} for tert-butylbenzene between 929 and 1157 K, where θ (kcal/mol) = 2.303RT. Resulting activation energies combined with heat capacity and heat of formation data led to the following dissociation enthalpies and enthalpies of formation at 298 K: DH° (øCH(CH3)? CH3) = 73.8 kcal/mol, ΔHf° (øÇCH(CH3)) = 39.6 kcal/mol, DH° (øC(CH3)2? CH3) = 72.9 kcal/mol, and ΔHf° (øÇ(CH3)2) = 32.4 kcal/mol. Derived high-pressure rate constants are in good accord with results of lower temperature toluene- and aniline-carrier experiments.  相似文献   

11.
Studies of the unimolecular decomposition of 4-methylpent-2-yne (M2P) and 4,4-dimethylpent-2-yne (DM2P) have been carried out over the temperature range of 903–1246 K using the technique of very-low pressure pyrolysis (VLPP). The primary reaction for both compounds is fission of the C? C bond adjacent to the acetylenic group producing the resonance-stabilized methyl-substituted propargyl radicals, CH3C??H(CH3) from M2P and CH3C?C?(CH3)2 from DM2P. RRKM calculations were performed in conjunction with both vibrational and hindered rotational models for the transition state. Employing the usual assumption of unit efficiency for gas-wall collisions, the results show that only the rotational model with a temperature-dependent hindrance parameter gives a proper fit to the VLPP data over the entire experimental temperature range. The high-pressure Arrhenius parameters at 1100 K are given by the rate expressions log k2 (sec?1) = (16.2 ± 0.3) ? (74.4 ± 1.5)/θ for M2P and log k3 (sec?1) = (16.4 ± 0.3) ? (71.4 ± 1.5)/θ for DM2P where θ = 2.303RT kcal/mol. The A factors were assigned from the results of recent shock-tube studies of related alkynes. Inclusion of a decrease in gas-wall collision efficiency with temperature would lower both activation energies by ~1 kcal/mol. The critical energies together with the assumption of zero activation energy for recombination of the product radicals at 0 K lead to DH0[CH3CCCH(CH3)? CH3] = 76.7 ± 1.5, ΔHf0[CH3CCCH(CH3)] = 65.2 ± 2.3, DH0[CH3CCCH(CH3)? H] = 87.3 ± 2.7, DH0[CH3CCC(CH3)2? CH3] = 72.5 ± 1.5, ΔH[CH3CC?(CH3)2] = 53.0 ± 2.3, and DH0[CH3CCC(CH3)2? H] = 82.3 ± 2.7, where all quantities are in kcal/mol at 300 K. The resonance stabilization energies of the 1,3-dimethylpropargyl and 1,1,3-trimethylpropargyl radicals are 7.7 ± 2.9 and 9.7 ± 2.9 kcal/mol at 300 K. Comparison with results obtained previously for other propargylic radicals indicates that methyl substituents on both the radical center and the terminal carbon atom have little effect on the propargyl resonance energy.  相似文献   

12.
The thermal unimolecular decomposition of 2-phenylethylamine (PhCH2CH2NH2) into benzyl and aminomethyl radicals has been studied under very-low-pressure conditions, and the enthalpy of formation of the aminomethyl radicals, ΔH°f, 298K (H2NCH2·) = 37.0 ± 2.0 kcal/mol, has been derived from the kinetic data. This result leads to a value for the C—H bond dissociation energy in methylamine, BDE(H2NCH2—H) = 94.6 ± 2.0 kcal/mol, which is about 3.4 kcal/mol lower than in C2H6 (98 kcal/mol), indicating a sizable stabilization in α-aminoalkyl radicals.  相似文献   

13.
A value of the enthalpy of formation of the phenoxy radical in the gas phase, ΔH°,298K (?O·, g) = 11.4 ± 2.0 kcal/mol, has been obtained from the kinetic study of the unimolecular decompositions of phenyl ethyl ether, phenyl allyl ether, and benzyl methyl ether
  • 1 Trivial names for ethoxy benzene, 2-propenoxy (allyloxy) benzene, and α-methoxytoluene, respectively
  • at very low pressures. Bond fission, producing phenoxy or benzyl radicals, respectively, is the only mode of decomposition in each case. The present value leads to a bond dissociation energy BDE(?O—H) = 86.5 ± 2 kcal/mol,
  • 2 1 kcal = 4.18674 kJ (absolute)
  • in good agreement with recent estimates made on the basis of competitive oxidation steps in the liquid phase. A comparison with bond dissociation energies of aliphatic alcohols, BDE(RO—H) = 104 kcal/mol, reveals that the stabilization energy of the phenoxy radical (17.5 kcal/mol) is considerably greater than the one observed for the isoelectronic benzyl radical (13.2 kcal/mol). Decomposition of phenoxy radicals into cyclopentadienyl radicals and CO has been observed at temperatures above 1000°K, and a mechanism for this reaction is proposed.  相似文献   

    14.
    The kinetics and equilibrium of the gas-phase reaction of CH3CF2Br with I2 were studied spectrophotometrically from 581 to 662°K and determined to be consistent with the following mechanism: A least squares analysis of the kinetic data taken in the initial stages of reaction resulted in log k1 (M?1 · sec?1) = (11.0 ± 0.3) - (27.7 ± 0.8)/θ where θ = 2.303 RT kcal/mol. The error represents one standard deviation. The equilibrium data were subjected to a “third-law” analysis using entropies and heat capacities estimated from group additivity to derive ΔHr° (623°K) = 10.3 ± 0.2 kcal/mol and ΔHrr (298°K) = 10.2 ± 0.2 kcal/mol. The enthalpy change at 298°K was combined with relevant bond dissociation energies to yield DH°(CH3CF2 - Br) = 68.6 ± 1 kcal/mol which is in excellent agreement with the kinetic data assuming that E2 = 0 ± 1 kcal/mol, namely; DH°(CH3CF2 - Br) = 68.6 ± 1.3 kcal/mol. These data also lead to ΔHf°(CH3CF2Br, g, 298°K) = -119.7 ± 1.5 kcal/mol.  相似文献   

    15.
    The kinetics of the gas-phase thermal iodination of hydrogen sulfide by I2 to yield HSI and HI has been investigated in the temperature range 555–595 K. The reaction was found to proceed through an I atom and radical chain mechanism. Analysis of the kinetic data yields log k (l/mol·sec) = (11.1 ± 0.18) – (20.5 ± 0.44)/θ, where θ = 2.303 RT, in kcal/mol. Combining this result with the assumption E?1 = 1 ± 1 kcal/mol and known values for the heat of formation of H2S, I2, and HI, ΔHf,2980(SH) = 33.6 ± 1.1 kcal/mol is obtained. Then one can calculate the dissociation energy of the HS? H bond as 90.5 ± 1.1 kcal/mol with the well-known values for ΔHf,2980 of H and H2S.  相似文献   

    16.
    Rate constants for the unimolecular dissociation of 1,3-butadiene have been measured with the pulsed laser flash absorption technique, following butadiene disappearance at 222 nm. The results are in excellent agreement with previous laser-schlieren measurements interpreted with a ΔH°298 = 100 kcal/mol heat of dissociation. A new RRKM calculation agreeing with both sets of rate constants gives log k(s?1) = 17.03 ± 0.3 – 94(kcal/mol)/RT. These data and product measurements using ARAS, single-pulse product analysis, and time-of-flight mass spectrometry, in shock tubes, all provide independent evidence against any major participation by molecular reactions in the dissociation. The only dissociation channel, or combination of channels, consistent with all the measurements is C-C scission to two vinyl radicals. However, the extremely slow rate of H-atom formation seen in ARAS experiments then requires an unacceptably low rate of vinyl dissociation.  相似文献   

    17.
    The decomposition of neopentane was studied using the very-low-pressure pyrolysis (VLPP) technique at temperatures from 1000 to 1260 K. The derived Arrhenius parameters are consistent with δHf0(t-butyl) = 8.4 kcal/mol. Using the above A factor, data on the decomposition of tetramethyltin yield DH0(Sn(CH3)3 - CH3) = 69 ± 2 kcal/mol.  相似文献   

    18.
    The rates of the hydride abstractions from the 2‐aryl‐1,3‐dimethyl‐benzimidazolines 1a – f by the benzhydrylium tetrafluoroborates 3a – e were determined photometrically by the stopped‐flow method in acetonitrile at 20 °C. The reactions follow second‐order kinetics, and the corresponding rate constants k2 obey the linear free energy relationship log k2(20 °C)= s(N+E), from which the nucleophile‐specific parameters N and s of the 2‐arylbenzimidazolines 1a – c have been derived. With nucleophilicity parameters N around 10, they are among the most reactive neutral C? H hydride donors which have so far been parameterized. The poor correlation between the rates of the hydride transfer reactions and the corresponding hydricities (ΔH0) indicates variable intrinsic barriers.  相似文献   

    19.
    A kinetic study of the very low-pressure pyrolysis of ethylbenzene (I), 2-phenylethylamine (II), and N,N-dimethyl 2-phenylethylamine (III) above 900 K yields the heats of formation of aminomethyl (A) and N,N-dimethylaminomethyl (B) radicals: ΔH?, 300 K(A) = 30.3 and ΔH?, 300 K(B) = 27.5 kcal/mol. The difference of stabilization energies Es, (relative to methyl radicals): Δ = Es(B) ? Es(A) = (2 ± 1) kcal/mol, conforms to similar effects in methyl substituted alkyl and amino free radicals.  相似文献   

    20.
    The mechanism and kinetics of the reaction of ortho-benzyne with vinylacetylene have been studied by ab initio and density functional CCSD(T)-F12/cc-pVTZ-f12//B3LYP/6-311G(d,p) calculations of the pertinent potential energy surface combined with Rice-Ramsperger-Kassel-Marcus - Master Equation calculations of reaction rate constants at various temperatures and pressures. Under prevailing combustion conditions, the reaction has been shown to predominantly proceed by the biradical acetylenic mechanism initiated by the addition of C4H4 to one of the C atoms of the triple bond in ortho-benzyne by the acetylenic end, with a significant contribution of the concerted addition mechanism. Following the initial reaction steps, an extra six-membered ring is produced and the rearrangement of H atoms in this new ring leads to the formation of naphthalene, which can further dissociate to 1- or 2-naphthyl radicals. The o-C6H4+C4H4 reaction is highly exothermic, by ∼143 kcal/mol to form naphthalene and by 31–32 kcal mol−1 to produce naphthyl radicals plus H, but features relatively high entrance barriers of 9–11 kcal mol−1. Although the reaction is rather slow, much slower than the reaction of phenyl radical with vinylacetylene, it forms naphthalene and 1- and 2-naphthyl radicals directly, with their relative yields controlled by the temperature and pressure, and thus represents a viable source of the naphthalene core under conditions where ortho-benzyne and vinylacetylene are available.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号