首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have measured the second harmonic intensity generated in ultrapure CdS crystals using a tunable dye laser. The fundamental frequency corresponding to the bandgap was tuned over the various exciton energy levels. An analysis shows that at laser intensities necessary to observe second harmonic signals high excitation phenomena are unavoidable. At these intensities the excitonic contributions to the nonlinear optical susceptibility χ(2) are quenched by high excitation effects.  相似文献   

2.
The relaxation of electronic excitations in CdWO4 and CaWO4 crystals was studied using the method of time-resolved interferometry with 100-fs temporal resolution at temperatures 15–295 K. The electronic system was excited in the one-photon and two-photon regime within the excitonic band in CaWO4 and in the electron-hole continuum in CdWO4. Immediate trapping of charge carriers was detected under pumping in the excitonic band of CaWO4. This result is in agreement with decay kinetics measurements with nanosecond time resolution under direct creation of excitons by 100-fs laser pulses. Fast relaxation of charge carriers followed by formation of excitons was observed in CdWO4. The comparison with previous work allows suggesting the formation of bulk excitons and surface-perturbed excitons in the multi-photon and one-photon regime. The corresponding models of self-trapped exciton creation in tungstate crystals are discussed.  相似文献   

3.
The effect on transmittance and reflectance in the vacuum ultraviolet (VUV) region by doping alkali fluorides (LiF, NaF and KF) has been investigated in a ternary fluoroaluminate (18BaF2-37CaF2-45AlF3) glass. The absorption edge of the glass obeys the Urbach rule and was shifted monotonically towards higher energies by increasing the concentration of each alkali fluoride. The VUV reflection peak at 11.3 eV was not sensitive to the change of the concentration of dopants. The magnitude of the edge shift was 10-20 times larger than that expected from the additive law on the magnitude of absorption coefficients of the glass and alkali fluorides. An excitonic interaction similar to that observed in mixed crystals of alkali halides is suggested from the monotonic shift toward the absorption edges of the dopants. The weak sensitivity of the reflection peak upon doping supports that the excitonic state lies predominantly around the edge energies.  相似文献   

4.
The influence of photoexcited carriers on the dynamics of the absorption spectra of GaAs/AlxGa1−2x As multilayer quantum wells is investigated experimentally. It is found that at quasiparticle densities all the way up to 1011 cm−2 the saturation of the excitonic absorption is due to both a decrease of oscillator strength and broadening of the excitonic lines. It is shown that in the case of femtosecond resonance laser exci-tation the decrease of oscillator strength is due to free electron-hole pairs, while the broadening and energy shift of the excitonic lines are due to the exciton-exciton interaction. The lifetimes of free electron-hole pairs and excitons (≈65 ps and ≈410 ps, respectively) are determined from the exponential decrease of the change in the oscillator strength and in the width and energy position of the excitonic lines. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 3, 139–144 (10 August 1997)  相似文献   

5.
We report an investigation of the ablation of NaCl crystals at the 157-nm wavelength of the F2 laser where there is very strong excitonic absorption. Probe-beam deflection and etch-rate measurements show that the interaction is characterised by a low ablation threshold (∼80 mJ cm-2) and a capability for controllable material removal at the nanometer level. Scanning electron microscopy of the exposed surfaces show this to be microscopically smooth but with fine cracks present. It is demonstrated that micron-scale features can be formed in NaCl using 157-nm laser ablation, a result attributed to the strongly localised optical and thermal nature of the interaction. The results are discussed within the framework of a thermal vaporisation model. Received: 29 May 2002 / Accepted: 17 July 2002 / Published online: 4 November 2002 RID="*" ID="*"Corresponding author. Fax: +44-1482/465606, E-mail: p.e.dyer@hull.ac.uk  相似文献   

6.
We have studied nanostructural and optical properties of composites of nanostructured nickel oxide films on a substrate from porous aluminum oxide NiO/Al2O3 in the UV, visible, and IR spectral ranges on exposure of composites to different gases, vacuum, and heat. We have found that, upon irradiation of NiO/Al2O3 composites by laser radiation at a wavelength of 633 nm, they demonstrate a high sensitivity to carbon monoxide CO in the range of the excitonic absorption of nickel oxide. We assume that an increase in the transmission coefficient of the composite in the excitonic absorption band is determined by luminescence that is caused by the oxidation reaction of carbon monoxide. The sensitivity of composites to CO is enhanced with decreasing the size of NiO nanoparticles and after evacuation. The values of the diffuse reflection coefficient at the laser radiation wavelength of 633 nm correlate with the size of nickel oxide nanoparticles. Spectral changes in the range of the fundamental absorption band of NiO that occur in the IR range and in diffuse reflection spectra are related to the appearance of carbon-containing compounds in the composite exposed to CO.  相似文献   

7.
Resonance Raman scattering by exciton polaritons in crystals of CuGaS2 under excitation with the 4880 and 4765 Å lines of an Ar+ laser at 9 K is studied. Lines of one-and two-phonon scattering of excitonic polaritons are found and studied. It is shown that the 1LO and 2LO phonons are arranged in accordance with their energies as the Stokes shifts move farther away from the excitation energy.  相似文献   

8.
We present the studies of nonlinear refraction and nonlinear absorption in promising crystals which are extensively used in Raman lasers or as solid-state laser host materials: Ba(NO3)2, KGW, KYW, and KYbW. The single-beam z-scan technique with 1 ps laser pulses at 790 and 395 nm has been applied for the study. Nonlinear refraction-index intensity-coefficients and two-photon absorption coefficients have been determined for the crystals. The considerable enhancement of nonlinear refraction is observed in the crystals at 395 nm.  相似文献   

9.
A method has been proposed to analyze the dynamics of interband two-photon absorption in a nonlinear medium excited by a sequence of picosecond laser pulses of variable intensity and continuous probe radiation. Induced absorption leading both to hysteresis in the dependence of the absorption on the intensity of laser pump radiation and to the opacity of crystals at the pump wavelength has been revealed in initially transparent ZnWO4 and PbWO4 crystals irradiated by a train of 523.5-nm pulses with a duration of 20 ps at pump intensities of 5 to 140 GW/cm2. The kinetics of an increase in absorption and its subsequent relaxation at a 523.5-nm picosecond excitation of the crystals have been measured with continuous 633-nm probe radiation. An exponential component of the increase in absorption with the time constant τ = 2−3.5 and 8–9.5 μs depending on the direction of the linear polarization of pump radiation has been revealed at 300 K in ZnWO4 and PbWO4 crystals, respectively. The absorption relaxation kinetics in the crystals are complicated and approach an exponential at a late stage with the constant τ = 40−130 and 12–80 ms for the ZnWO4 and PbWO4 crystals, respectively.  相似文献   

10.
We report changes in the excitonic absorption edge of CuCl caused by intense CO2 laser radiation at 10.6 m, a wavelength which lies in the infrared (ir) transparency region of CuCl. With an ir intensity of 0.4 GW/cm2 we observe a 100% absorption increase for the Kr+ laser probe wavelength of 406.7nm. The effect scales linearly with ir intensity but does not depend on relative polarization. We explain the effect by laser field induced electroabsorption of the exciton. The magnitude of the effect is closely related to electroabsorption induced by static external fields and by internal electric fields from optical phonons.  相似文献   

11.
Under two-photon 523.5 nm interband picosecond laser excitation, we measured the kinetics of induced absorption in PbWO4, ZnWO4, and PbMoO4 crystals with 532 to 633 nm continuous probe radiation. We obtained real-time information about the dynamics of the generation, relaxation, and accumulations of electronic excitations over a wide time range (from picoseconds to hundreds of seconds) and the 77–300 K temperature range. For the studied crystals, exponential temperature-independent growth of the induced absorption (IA) with 60 ns rise time reflects the dynamics of the generation of electronic excitation. The kinetics of the IA exponential growth with temperature-dependent 3.5–11 μs time constants reflect the dynamics of energy migration between neighboring tungstate (molibdate) ions to traps for the studied crystals. The multiexponential relaxation absorption kinetics strongly depend on temperature, and the relaxation decay time of induced absorption increased from tens to hundreds of milliseconds to seconds under crystal cooling from 300 to 77 K. We found that the increase in the laser pump repetition rate (0–10 Hz) leads to the accumulation of electronic excitations. Control of the repetition rate and the number of excitations allowed us to change the relaxation time of the induced absorption by more than two orders of magnitude. Due to accumulation of excitations at 77 K, the absorption relaxation time can exceed 100 s for PbWO4 and PbMoO4 crystals. In the initially transparent crystals, two-photon interband absorption (2PA) leads to crystals opacity at the 523 and 633 nm wavelengths. (An inverse optical transmission of the crystals exceeds 50–55 at a 50–100 GW/cm2 pump intensity.) Measured at ~1 mW probe radiation of 532 and 633 nm wavelengths, the induced absorption values are comparable with those obtained under two-photon absorption at ~5 kW pump power. An optical 2PA shutter for the visible spectral range is proposed with a variable shutting time from hundreds of microseconds to tens of seconds.  相似文献   

12.
The way to determine the effective temperature of the excitonic system from the study of the edge luminescence high energy region is motivated. Experimental data on the exciton heating in ZnSe single crystals under laser excitation are presented. The effective temperature of excitons Tx has reached 158 K at the lattice temperature TL = 77 and the peak excitation intensity 2.7 MW cm?2 (hv0 = 3.50), while the excess temperature of the excitons (Tx ? TL) increases as a square root of the pump intensity. Exciton-hot-electron, exciton-hot-photon, exciton-exciton interactions and excitonic Auger process are considered as possible causes of the exciton system heating.  相似文献   

13.
Excitonic absorption, reflection and photoluminescence spectra of mixed Zn(P1-xAsx)2 crystals over the full range of x ( 0 ? x ? 1) and Zn1-xCdxP2 crystals at 0 ? x ? 0.05 have been studied at low temperatures (1.8 K). The decrease of the energy gap in Zn(P1-xAsx)2 at the increase of x occurs slightly sublinearly. The rydbergs of excitonic series in this crystals decrease as well, and the dependences Ry ( x ) for all series are strongly superlinear at small x. In Zn1-xCdxP2 crystals the energy gap and rydbergs decrease at the increase of x (at 0 ? x ? 0.05) as well. The dependences of Eg and Ry on x are considerably stronger in Zn(P1-xAsx)2 than in Zn1-xCdxP2. At the increase of x the half-width of excitonic absorption lines increases monotonically in both type crystals that is evidence of the increasing role of fluctuations of crystal potential. Received 13 March 2002 Published online 9 July 2002  相似文献   

14.
15.
The optical constants of SbI3 single crystals, prepared from solution, were calculated from normal incidence reflectance data via a Kramers-Kronig analysis. The dependence of the absorption coefficient on the photon energy suggests the presence of a direct allowed interband transition whereE g d =2·225 eV at room temperature, as well as indirect phonon-assisted transition. The absorption coefficient follows Urbach's empirical relation in the range 2·08–2·34 eV near the intrinsic edge, and a Gaussian shape was obtained near the band maximum. This behaviour is indicative of its excitonic origin and may be contributed to localized excitons in the crystal.  相似文献   

16.
Cu6AsS5I single crystals were grown using chemical vapour transport method. Two low-temperature phase transitions (PT) are observed from isoabsorption studies: a first-order PT at Т?=153±1 K and a second-order PT in the temperature interval T?I=260–280 K. At low temperatures and high absorption levels an excitonic absorption band was revealed in the range of direct optical transitions. At Т>Т?, the absorption edge has an exponential shape and a characteristic Urbach bundle is observed. The influence of the cationic P→As substitution on the parameters of the Urbach absorption edge, parameters of exciton–phonon interaction, and phase transitions temperatures are studied.  相似文献   

17.
Strong excitonic emission from PbI2 has been observed to result from high intensity illumination with a nitrogen laser. Spectroscopic examination has shown both a shift and broadening of the excitonic band suggestive of excitonic interactions.  相似文献   

18.
The processes of nonlinear refraction and nonlinear absorption are studied in the photorefractive Bi12SiO20 (BSO) and Bi12GeO20 (BGO) crystals at a wavelength of a picosecond Nd:YAG laser of 1064 nm. The nonlinear refraction in the crystals is shown to be related to the Kerr effect, and the nonlinear absorption at this wavelength, to three-photon absorption. The three-photon absorption coefficients of the BSO and BGO crystals are equal, respectively, to (2.5±0.8) ×10?20 and (4.4±1.3) ×10?20 cm3W?2.  相似文献   

19.
LiF crystals containing different types of color centers were used for pulse shaping of picosecond (ps) light pulses of a Nd-glass laser. Besides the saturable absorption of the F2-centers a two-photon one-photon step absorption was found. Inserting the crystal in the laser resonator reduces the duration and steeps the envelope of the ps-pulse train. No remarkable pulse shortening of single ps-light pulse could be achieved by passing these crystals.  相似文献   

20.
Direct creation of bi-excitonic states by photon-assisted two-photon absorption in indirect-gap semiconductors is investigated theoretically. The symmetry of the indirect bi-exciton states and of the phonon used are given for the case of Ge. A numerical application to the case of Si shows that the indirect two-photon absorption coefficient for bi-excitonic α2I (bi-ex) transitions is several orders of magnitude larger than both indirect two-photon interband, α2I (band), and excitonic, α2I (exc), transitions. It becomes smaller than both indirect one-photon interband, α1I (band), and excitonic, α1I (exc), transitions for available laser intensities. The essential contribution to this enhancement of α2I (bi-ex) is found to be from the resonance effect in the first process and from both the resonance effect and matrix elements included in the second process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号