首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.

A more thorough understanding of the properties of bulk material structures in solid–liquid separation processes is essential to understand better and optimize industrially established processes, such as cake filtration, whose process outcome is mainly dependent on the properties of the bulk material structure. Here, changes of bulk properties like porosity and permeability can originate from local variations in particle size, especially for non-spherical particles. In this study, we mix self-similar fractions of crushed, irregularly shaped Al2O3 particles (20 to 90 µm and 55 to 300 µm) to bimodal distributions. These mixtures vary in volume fraction of fines (0, 20, 30, 40, 50, 60 and 100 vol.%). The self-similarity of both systems serves the improved parameter correlation in the case of multimodal distributed particle systems. We use nondestructive 3D X-ray microscopy to capture the filter cake microstructure directly after mechanical dewatering, whereby we give particular attention to packing structure and particle–particle relationships (porosity, coordination number, particle size and corresponding hydraulic isolated liquid areas). Our results reveal widely varying distributions of local porosity and particle contact points. An average coordination number (here 5.84 to 6.04) is no longer a sufficient measure to describe the significant bulk porosity variation (in our case, 40 and 49%). Therefore, the explanation of the correlation is provided on a discrete particle level. While individual particles?<?90 µm had only two or three contacts, others?>?100 µm took up to 25. Due to this higher local coordination number, the liquid load of corresponding particles (liquid volume/particle volume) after mechanical dewatering increases from 0.48 to 1.47.

  相似文献   

2.
1. Introduction The mechanisms of impact and rebound of solid parti- cles in particulate flow systems are of interest over a wide range of application areas such as fluidized beds, pneu- matic transport, filtration processes, erosion and pollution control of suspended particles. In many cases, the colli- sions of particles against themselves and against walls may affect the properties of the mixture. Efforts have been made to describe the fundamental mechanics of particle collisions. The conta…  相似文献   

3.
Short particle residence time in entrained flow gasifiers demands the use of pulverized fuel particles to promote mass and heat transfer, resulting high fuel conversion rate. The pulverized biomass particles have a wide range of aspect ratios which can exhibit different dispersion behavior than that of spherical particles in hot product gas flows. This results in spatial and temporal variations in temperature distribution, the composition and the concentration of syngas and soot yield. One way to control the particle dispersion is to impart a swirling motion to the carrier gas phase. This paper investigates the dispersion behavior of biomass fuel particles in swirling flows. A two-phase particle image velocimetry technique was applied to simultaneously measure particle and gas phase velocities in turbulent isothermal flows. Post-processed PIV images showed that a poly-dispersed behavior of biomass particles with a range of particle size of 112–160 µm imposed a significant impact on the air flow pattern, causing air flow decelerated in a region of high particle concentration. Moreover, the velocity field, obtained from individually tracked biomass particles showed that the swirling motion of the carrier air flow gives arise a rapid spreading of the particles.  相似文献   

4.
Particle coatings are used extensively to generate dispersed solids with well-defined properties, e.g., to protect active ingredients, with most coating processes using core particles of a diameter larger than 200 μm. This work contributes to the development of a coating process for fine dispersed particles (diameter less than 50 μm) by combining two particle-formulation processes, namely, coating and spray drying. The feasibility of the operation is based on and demonstrated by the innovative application of a two-fluid nozzle. Experiments were conducted by using glass particles as core particles and sodium benzoate as the coating agent. The coating of finely dispersed particles is achieved by the spraying of particles and coating solution as a homogeneous suspension. The aim is to create droplets with only one contained particle at the nozzle outlet. After evaporation of the water in the droplet, a thin solid film is built on the particle surface. The suspension viscosity was measured and compared with empirical equations from the literature. The liquid-film thickness on the particle surface was calculated to predict the building of a uniform coating layer or agglomerates. In this study, the feasibility of pneumatic transport through the nozzle and an investigation of the process were illustrated. The agglomeration fraction and degree of coating of the particle surface were analyzed optically by scanning electron microscopy. In this way, the influence of different processes and suspension parameters on the product quality were determined.  相似文献   

5.
Evanescent waves from the total internal reflection of a 488 nm argon-ion laser beam at a glass-water interface were used to measure velocity fields in creeping rotating Couette flow within 380 nm of the stationary solid surface. Images of fluorescent 300 and 500 nm diameter polystyrene and silica particles suspended in water recorded at 30 Hz were processed using cross-correlation particle image velocimetry to determine the two in-plane velocity components with an in-plane spatial resolution of 40Ꮀ µm over a 200 µm (h)쏦 µm (v) field of view. The results are in reasonable agreement with the exact solution for the corresponding single-phase Stokesian flow. These data are, to our knowledge, the first velocity field measurements with this small out-of-plane spatial resolution (in all cases less than 380 nm), and the first such measurements in this interfacial or near-wall region. This paper describes the novel experimental diagnostic technique used to obtain these results.  相似文献   

6.
Three dimensionally coupled computational fluid dynamics (CFD) and discrete element method (DEM) were used to investigate the flow of corn-shaped particles in a cylindrical spouted bed with a conical base. The particle motion was modeled by the DEM, and the gas motion by the k-? two-equation turbulent model. A two-way coupling numerical iterative scheme was used to incorporate the effects of gas–particle interactions in terms of momentum exchange. The corn-shaped particles were constructed by a multi-sphere method. Drag force, contact force, Saffman lift force, Magnus lift force, and gravitational force acting on each individual particle were considered in establishing the mathematical modeling. Calculations were carried out in a cylindrical spouted bed with an inside diameter of 200 mm, a height of 700 mm, and a conical base of 60°. Comparison of simulations with experiments showed the availability of the multi-sphere method in simulating spouting action with corn-shaped particles, but it depended strongly on the number and the arrangement of the spherical elements. Gas–solid flow patterns, pressure drop, particle velocity and particle concentration at various spouting gas velocity were discussed. The results showed that particle velocity reaches a maximum at the axis and then decreases gradually along the radial direction in the whole bed. Particle concentration increases along the radial direction in the spout region but decreases in the fountain region, while it is nearly constant in the annulus region. Increasing spouting gas velocity leads to larger pressure drop, remarkably increased speed of particle moving upward or downward, but decreased particle concentration.  相似文献   

7.
A systematic study of fly ash electrostatic beneficiation in a free-falling separation system was carried out to provide fundamental understanding of the separation efficiency for the design of a suitable process for industrial applications. The parameters investigated included feeding position, electric field strength, particle size and moisture content. Particles larger than 105 μm presented the best separation efficiency among four different size fractions, whereas particles smaller than 44 μm showed minimal separation. However, sonication treatments helped separation by liberating more carbon from ash particles, although particle sizes were reduced as well. Experiments also showed that exposure to moisture significantly altered charging behavior of fly ash and its subsequent separation due to more free mobile ion-induced charge exchanges. The optimal feeding position was found to be slightly on the side of the negative electrode, leading to a 30% reduction in loss-on-ignition (LOI) and a 45% recovery in a single pass. A simplified mechanical model based on trajectory analysis for charged particles in an electrical field was in reasonable agreement with experimental results.  相似文献   

8.
主要应用浸没边界的格子玻尔兹曼方法(immersed boundary-lattice Boltzmann method, IB–LBM) 对处于不同倾斜角度通道内的三个刚体圆形颗粒在重力作用下下落的动力学特性进行了计算研究. 首先分析通道倾斜角度的影响, 结果显示当通道倾斜角处于59°90°的范围时会发生后一个颗粒超越前一个颗粒的现象. 其次, 研究了Re对颗粒沉降特性的影响, 结果表明Re 越大, 颗粒间发生聚集的时间越早. 研究还发现当3 个颗粒的直径大小不均匀时, 颗粒由大到小纵向依次排列, 或者出现中间小球直径较相邻两个小球直径大的排列情况, 均能促使颗粒加快聚集. 本文的研究结果可为环境工程及地质学中的颗粒沉降问题提供有价值的参考.  相似文献   

9.
胡平  张兴伟  牛小东  孟辉 《力学学报》2014,46(5):673-684
主要应用浸没边界的格子玻尔兹曼方法(immersed boundary-lattice Boltzmann method, IB–LBM) 对处于不同倾斜角度通道内的三个刚体圆形颗粒在重力作用下下落的动力学特性进行了计算研究. 首先分析通道倾斜角度的影响, 结果显示当通道倾斜角处于59°90°的范围时会发生后一个颗粒超越前一个颗粒的现象. 其次, 研究了Re对颗粒沉降特性的影响, 结果表明Re 越大, 颗粒间发生聚集的时间越早. 研究还发现当3 个颗粒的直径大小不均匀时, 颗粒由大到小纵向依次排列, 或者出现中间小球直径较相邻两个小球直径大的排列情况, 均能促使颗粒加快聚集. 本文的研究结果可为环境工程及地质学中的颗粒沉降问题提供有价值的参考.   相似文献   

10.
Abstract. Transdermal powdered drug delivery involves the propulsion of solid drug particles into the skin by means of high-speed gas-particle flow. The fluid dynamics of this technology have been investigated in devices consisting of a convergent-divergent nozzle located downstream of a bursting membrane, which serves both to initiate gas flow (functioning as the diaphragm of a shock tube) and to retain the drug particles before actuation. Pressure surveys of flow in devices with contoured nozzles of relatively low exit-to-throat area ratio and a conical nozzle of higher area ratio have indicated a starting process of approximately 200 s typical duration, followed by a quasi-steady supersonic flow. The velocity of drug particles exiting the contoured nozzles was measured at up to 1050 m/s, indicating that particle acceleration took place primarily in the quasi-steady flow. In the conical nozzle, which had larger exit area ratio, the quasi-steady nozzle flow was found to be overexpanded, resulting in a shock system within the nozzle. Particles were typically delivered by these nozzles at 400 m/s, suggesting that the starting process and the quasi-steady shock processed flow are both responsible for acceleration of the particle payload. The larger exit area of the conical nozzle tested enables drug delivery over a larger target disc, which may be advantageous. Received 12 March 2000 / Accepted 8 June 2000  相似文献   

11.
The role of particle diameter in the heat transfer of a gas–solid suspension to the walls of a circulating fluidized bed was studied for particles of uniform size. This work reports and analyzes new experimental results for the local bed to wall heat transfer coefficient, not including the radiation component, in a long active heat transfer surface length laboratory bed, which extend previous findings and clear up some divergences. The research included determining the effects of extension and location of the heat transfer surface, circulating solids mass flux and average suspension density. An experimental set-up was built, with a 72.5 mm internal diameter riser, 6.0 m high, composed of six double pipe heat exchangers, 0.93 m high, located one above the other. Five narrow sized diameter quartz sand particles − 179, 230, 385, 460 and 545 μm − were tested. Temperature was kept approximately constant at 423 K and the superficial gas velocity at 10.5 m/s. The major influence of suspension density on the wall heat transfer was confirmed, and contrary to other authors, a significant effect of particle size was found, which becomes more relevant for smaller particles and increasing suspension density. It was observed that the extension of the heat transfer surface area did not influence the heat transfer coefficient for lengths greater than 0.93 m.The heat transfer surface location did not show any effect, except for the exchanger at the botton of the riser. A simple correlation was proposed to calculate the heat transfer coefficient as a function of particle diameter and suspension density.  相似文献   

12.
Particle-laden flows in a horizontal channel were investigated by means of a two-phase particle image velocimetry (PIV) technique. Experiments were performed at a Reynolds number of 6 826 and the flow is seeded with polythene beads of two sizes, 60 μm and 110 μm. One was slightly smaller than and the other was larger than the Kolmogorov length scale. The particle loadings were relatively low, with mass loading ratio ranging from 5×10−4 to 4×10−2 and volume fractions from 6×10−7 to 4.8×10−5, respectively. The results show that the presence of particles can dramatically modify the turbulence even under the lowest mass loading ratio of 5×10−4. The mean flow is attenuated and decreased with increasing particle size and mass loading. The turbulence intensities are enhanced in all the cases concerned. With the increase of the mass loading, the intensities vary in a complicated manner in the case of small particles, indicating complicated particle-turbulence interactions; whereas they increase monotonously in the case of large particles. The particle velocities and concentrations are also given. The particles lag behind the fluid in the center region but lead in the wall region, and this trend is more prominent for the large particles. The streamwise particle fluctuations are larger than the gas fluctuations for both sizes of particles, however their varying trend with the mass loadings is not so clear. The wall-normal fluctuations increase with increasing mass loadings. They are smaller in the 60 μm particle case but larger in the 110 μm particle case than those of the gas phase. It seems that the small particles follow the fluid motion to certain extent while the larger particles are more likely dominated by their own inertia. Finally, remarkable non-uniform distributions of particle concentration are observed, especially for the large particles. The inertia of particles is proved to be very important for the turbulence modification and particles behaviors and thus should be considered in horizontal channels. The project supported by the National Natural Science Foundation of China (50276021), and Program for New Century Excellent Talents in University, Ministry of Education (NCET-04-0708) The English text was polished by Yunming Chen.  相似文献   

13.
A holographic particle image velocimetry system for investigating hairpin vortices, artificially generated in a subcritical plane Poiseuille air flow, is presented. The optical setup is a modified version of the hybrid scheme, previously employed in turbulent water flows. Accordingly, separate reconstruction of holograms, successively recorded on the same photoplate, is provided by using two reference beams. The positioning of the photoplate within the image of the sample volume accompanied by special alignment procedures, minimizes the apparent displacement caused by the misalignment of the reconstruction waves. A novel method is employed for detecting in-focus particles. Testing the system with a fixed 5 μm diameter wire, results in a corresponding 3D wire image having a diameter of ≈25 μm. Finally, the instantaneous topology and 3D distribution of the two velocity components associated with the hairpin vortex are presented.  相似文献   

14.
Quantum Nanospheres™ (QNs) have been developed as a new type of flow-tracing particle for micron resolution particle image velocimetry (PIV). The 70 nm diameter QNs were created by conjugating quantum dots to polystyrene beads. The fluorescent QNs have a large Stokes’ shift and are impervious to photobleaching. The use of QNs as flow-tracing particles for micro-PIV was demonstrated by measuring fluid motion in a 30 × 300 μm channel. Using an interrogation region of 1 × 1,024 pixels and ensemble averaging 1,800 image pairs, the physical volume of the interrogation region was 117 μm × 117 μm × 2 μm.  相似文献   

15.
Short-pulse injection experiments are investigated to study the effects of particle size non-uniformity on the transport and retention in saturated porous media. Monodisperse particles (3, 10, and 16 \(\upmu \hbox {m}\) latex microspheres) and polydisperse particles (containing 3, 10, and 16 latex microspheres) were explored. The obtained results suggest considering not only the particle sizes but also their polydispersivity (particle size non-uniformity) in transport and retention. Although, the density of the suspended particles is close to that of water, results reveal a slow transport of particles compared to the dissolved tracer whatever their size and flow velocity. The recovered particles in the mixture experiments show that the retention of large particles (10 and 16 \(\upmu \hbox {m}\)) enhances the retention of small ones (3 \(\upmu \hbox {m}\)). However, the straining of 10 and 16 \(\upmu \hbox {m}\) particles in “mixture experiments” is smaller than their straining in “monodisperse experiments”. A linear relationship summarizing the simultaneous effect of particle sizes and flow velocity on deposition kinetics coefficient is proposed.  相似文献   

16.
The turbulent fluid and particle interaction in the turbulent boundary layer for cross flow over a cylinder has been experimentally studied. A phase-Doppler anemometer was used to measure the mean and fluctuating velocities of both phases. Two size ranges of particles (30μm–60μm and 80μm–150μm) at certain concentrations were used for considering the effects of particle sizes on the mean velocity profiles and on the turbulent intensity levels. The measurements clearly demonstrated that the larger particles damped fluid turbulence. For the smaller particles, this damping effect was less noticeable. The measurements further showed a delay in the separation point for two phase turbulent cross flow over a cylinder. The project supported by the National Natural Science Foundation of China  相似文献   

17.
ODT (one-dimensional turbulence) simulations of particle-carrier gas interactions are performed in the jet flow configuration. Particles with different diameters are injected onto the centerline of a turbulent air jet. The particles are passive and do not impact the fluid phase. Their radial dispersion and axial velocities are obtained as functions of axial position. The time and length scales of the jet are varied through control of the jet exit velocity and nozzle diameter. Dispersion data at long times of flight for the nozzle diameter (7 mm), particle diameters (60 and 90 µm), and Reynolds numbers (10, 000–30, 000) are analyzed to obtain the Lagrangian particle dispersivity. Flow statistics of the ODT particle model are compared to experimental measurements. It is shown that the particle tracking method is capable of yielding Lagrangian prediction of the dispersive transport of particles in a round jet. In this paper, three particle-eddy interaction models (Type-I, -C, and -IC) are presented to examine the details of particle dispersion and particle-eddy interaction in jet flow.  相似文献   

18.
We have measured the trajectories of particles into, and around, the recirculation zone formed in water flowing through a sudden pipe expansion with radius ratio 1:3.7, at Reynolds numbers between 5,960 and 41,700 over a range of particle Stokes number (here defined as \( St = {\frac{{T_{\text{f}} }}{{\tau_{\text{p}} }}} \), where T f is an appropriate mean or turbulent timescale of the fluid flow and a particle relaxation time, τp,) between 6.2 and 51 and drift parameter between 0.3 and 2.8. The particles were thus weakly inertial but nevertheless heavy with a diameter about an order of magnitude larger than the Kolmogorov scale. Trajectories of particles, released individually into the flow, were taken in a Lagrangian framework by a three-dimensional particle tracking velocimeter using a single 25 Hz framing rate intensified CCD camera. Trajectories are quantified by the axial distribution of the locations of particle axial velocity component reversal and the probability distributions of trajectory angle and curvature. The effect of increasing the drift parameter was to reduce the tendency for particles to enter the recirculation zone. For centreline release, the proportion of particles entering the recirculation zone and acquiring a negative velocity decreased from about 80% to none and from about 66% to none, respectively, as the drift parameter increased from 0.3 to 2.8. Almost half of the particles experienced a relatively large change of direction corresponding to a radius of curvature of their trajectory comparable to, or smaller than, the radius of the downstream pipe. This was due to the interaction between these particles and eddies of this size in the downstream pipe and provides experimental evidence that particles are swept by large eddies into the recirculation zone over 1.0 < \( Z^{*} \) < 2.5, where \( Z^{*} \) is axial distance from the expansion plane normalized by the downstream pipe diameter, which was well upstream of the reattachment point at the wall (\( Z^{*} \approx 3. 5 \)). Once inside the recirculation zone, the particle motion was governed more by the drift parameter than by the Stokes number.  相似文献   

19.
Airborne inhalable particles are a potent environmental pollutant. Formed via industrial processes, separation of these particles is difficult using conventional clean up techniques. In this work, solid nuclei particles of different chemical compositions were introduced into an agglomeration chamber with simulated flue gases to investigate their ability to remove these particles. Organic nuclei were able to capture more inhalable particles from coal-derived fly ash than inorganic nuclei, though these proved more effective for the agglomeration of inhalable particles in refuse-derived fly ash. Increasing the diameter of the solid nuclei benefitted the agglomeration process for both types of ash. Varying the local humidity changed adhesion between the particles and encouraged them to aggregate. Increasing the relative humidity consistently increased particle agglomeration for the refuse-derived ash. For coal-derived fly ash, the removal efficiency increased initially with relative humidity but then further increases in humidity had no impact on the relatively high efficiencies. After agglomeration in an atmosphere of 62% relative humidity, the mean mass diameter of inhalable particles in the coal-derived fly ash increased from 3.3 to 9.2 μm. For refuse-derived fly ash, agglomeration caused the percentage of particles that were less than 2 μm to decrease from 40% to 15%. After treatment at a relative humidity of 61%, the mean size of inhalable particles exceeded 10 μm.  相似文献   

20.
The dynamic behavior of individual particles during the mixing/segregation process of particle mixtures in a gas fluidized bed is analyzed. The analysis is based on the results generated from discrete particle simulation, with the focus on the trajectory of and forces acting on individual particles.Typical particles are selected representing three kinds of particle motion:a flotsam particle which is initially at the bottom part of the bed and finally fluidized at the top part of the bed; a jetsam particle which is initially at the top part of the bed and finally stays in the bottom de-fluidized layer of the bed; and a jetsam particle which is intermittently joining the top fluidized and bottom de-fluidized layers. The results show that the motion of a particle is chaotic at macroscopic or global scale, but can be well explained at a microscopic scale in terms of its interaction forces and contact conditions with other particles, particle-fluid interaction force, and local flow structure. They also highlight the need for establishing a suitable method to link the information generated and modeled at different time and length scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号