首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amorphous films of Lexan polycarbonate have been exposed to acetone vapor at controlled temperatures and partial pressures in order to study sorption kinetics and thermodynamics and polymer crystallization behavior. Sorption isotherms show a discontinuity is slope at or near the depressed glass transition, which itself was identified by torsion pendulum measurements. Crystallization abruptly begins to occur at partial pressures equal to or slightly above that of the solubility transition and is manifested by delayed desorption and whitening phenomena. In this process 20% crystallinity is usually developed, as measured by calorimetry which, however, produces a 40% drop in acetone solubility. Although the depressed glass temperature is near 0°C. in saturated atmospheres—a drop of 145°C.—the melting point is only depressed 60 or 70°C. Such disparity probably accounts for the enhanced polycarbonate crystallization rate in acetone over that in the dry bulk polymer above the normal Tg.  相似文献   

2.
(NH4)3[M2NCl10] (M = Nb, Ta): Synthesis, Crystal Structure, and Phase Transition The nitrido complexes (NH4)3[Nb2NCl10], and (NH4)3[Ta2NCl10] are obtained in form of moisture-sensitive, tetragonal crystals by the reaction of the corresponding pentachlorides with NH4Cl at 400 °C in sealed glass ampoules. Both compounds crystallize isotypically in two modifications, a low temperature form with the space group P4/mnc and a high temperature form with space group I4/mmm. In case of (NH4)3[Ta2NCl10] a continuous phase transition occurs between –70 °C and +60 °C. For the niobium compound this phase transition is not yet fully completed at 90 °C. The structure of (NH4)3[Nb2NCl10] was determined at several temperatures between –65 °C und +90 °C to carefully follow the continuous phase transition. For (NH4)3[Ta2NCl10] the structure of the low temperature form was determined at –70 °C, and of the high temperature form at +60 °C. The closely related crystal structures of the two modifications contain NH4+ cations and [M2NCl10]3– anions. The anions with the symmetry D4h are characterized by a symmetrical nitrido bridge M=N=M with distances Nb–N = 184.5(1) pm at –65 °C or 183.8(2) pm at 90 °C, and Ta–N = 184.86(5) pm at –70 °C or 184.57(5) pm at 60 °C.  相似文献   

3.
The measurement of the magnitude and sign of 2J(C,H) couplings offers a reliable way to determine the absolute configuration at a carbon center in a fixed cyclic system. A decrease of the dihedral angle ? in the O—CA—CB—H fragment always leads to a change of the 2J(CA,HB) coupling to more negative values, independent of the type and position of substituents at the two carbon centers. The orientations of the two substituents at C‐3 of the epimeric pair 1 and 2 were determined unambiguously through the measurement of the geminal coupling constants between C‐3 and the hydrogen atoms at C‐2 and C‐4. In particular, 2J(C‐3,H‐2ax) with ?1.5 Hz, ? = 174° in 1 and ?6.6 Hz, ? = 47° in 2 , and 2J(C‐3,H‐4) with +1.5 Hz, ? = 175° in 1 and ?4.7 Hz, ? = 49° in 2 showed the greatest differences between the two epimers. Both couplings therefore allow the determination of the absolute configuration at C‐3. It should be noted, however, that the size of the coupling constants can be different for dihedral angles of nearly identical size, when there are different numbers of electronegative substituents on the two coupling pathways, i.e. no O‐substituent at C‐2, but one axial O‐substituent at C‐4. It becomes clear that it is not sufficient to measure the magnitude of 2J coupling constants only, but that the sign of the geminal coupling is needed to identify the absolute configuration at a chiral center. The coupling of C‐3 with H‐2eq is not useful for the determination of the configuration at C‐3, as the similarity of the dihedral angles ? (O—C‐3—C‐2—H‐2eq) (57° in 1 and 70° in 2 ) leads to identical coupling constants (?6.1 Hz) for both epimers. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
In the title compounds, C6H8N3O2+·NO3? and C5­H6­N3­O2+·­CH3SO3?, respectively, the cations are almost planar; the twist of the nitr­amino group about the C—N and N—N bonds does not exceed 10°. The deviations from coplanarity are accounted for by intermolecular N—H?O interactions. The coplanarity of the NHNO2 group and the phenyl ring leads to the deformation of the nitr­amino group. The C—N—N angle and one C—C—N angle at the junction of the phenyl ring and the nitr­amino group are increased from 120° by ca 6°, whereas the other junction C—C—N angle is decreased by ca 5°. Within the nitro group, the O—N—O angle is increased by ca 5° and one O—N—N angle is decreased by ca 5°, whereas the other O—N—N angle remains almost unchanged. The cations are connected to the anions by relatively strong N—H?O hydrogen bonds [shortest H?O separations 1.77 (2)–1.81 (3) Å] and much weaker C—H?O hydrogen bonds [H?O separations 2.30 (2)–2.63 (3) Å].  相似文献   

5.
An optical pyrometer is used to measure and, in conjunction with temperature programmer and controller, control the temperature of the NETSZSCH Dilatometer DIL 402 E/7 up to 2400°C. This instrument is thus suitable to investigate sintering of technical ceramic materials such as SSiC and ZrO2. Measurements carried out on these materials containing organic additives show that the sintering range of SSiC starts at 1800°C—although its final density is not reached at 2400°C at a heating rate of 20 deg·min?1—and that the densification of ZrO2 occurs between 1000° and 1800°C. Using rate controlled sintering (RCS) the sintering process can be extended on a time scale, but the same densities are obtained at the same temperatures when comparing the measurements with and without RCS.  相似文献   

6.
The radical terpolymerization of the donor-acceptor-donor monomer system, phenanthrene (P)—maleic anhydride (M)—trans-stilbene (S), was studied. These monomers are known to be nonhomopolymerizable. The terpolymerization was carried out in p-dioxane and/or toluene at 70°C in the presence of benzoyl peroxide used as the initiator. P and S were found to form charge transfer complexes (CTC) with M in p-dioxane at 35°C. The results obtained are discussed in terms of the free monomer and complex propagation models. It is shown that terpolymerization is carried out at a stage close to binary copolymerization of two complexomers. The reactivity ratio of P … M and S … M complexes was estimated by the Kelen-Tüdös method. Absorbance ratios at 1770 cm?1 (vC=0 of anhydride group), 764 cm?1CH in monosubstituted benzene of S), and 820 cm?1CH in disubstituted benzene of P) as a function of terpolymer composition were established. P—M—S terpolymers are shown to have high thermal stabilities. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
Two endothermic transitions, at 36°C and 44°C, were observed with differential scanning calorimetry (DSC) upon heating dioctadecyldimethylammonium bromide vesicle dispersions that were equilibrated below 15°C while in samples kept at 25°C there was only the transition at 44°C, which was shown to be the gel to liquid–crystalline transition by 1H-NMR measurements. The transition at 36°C was reversed in an exothermic transition around 13°C upon cooling. The slowness of this transition at ambient temperatures suggests that the presence of the transition at 36°C in a DSC upscan depends strongly on the sample history.  相似文献   

8.
Synthesis, Crystal Structure, and Phase Transition of Se4(MoOCl4)2 Dark green, very air sensitive crystals of Se4(MoOCl4)2 are formed from selenium and MoOCl4 at 190°C in a sealed, evacuated glass ampoule in quantitative yield. The structure is built of nearly square planar Se42+ ions and centrosymmetric dimeric MoOCl4? ions which are linked by bridging Cl atoms. At ?21°C Se4(MoOCl4)2 undergoes a reversible solid state phase transition of first order. Structure determinations at ?70°C and 23°C show that during the phase transition the structures of the ions remain unchanged, while the orientations of the ions with respect to each other change in such a way that in the low temperature form the Se42+ ions obtain a higher coordination number by Cl and O atoms of neighboring MoOCl4? ions.  相似文献   

9.
Emission from cyclohexane and bicyclohexyl solids has been found to critically depend on their crystalline structure. The emission spectrum of cyclohexane suddenly blue-shifts 2900 cm?1 on cooling below its solid—solid phase transition temperature (?87.1°C). The bicyclohexyl emission intensity sharply decreases on freezing to solid and then again sharply recovers at a heretofore unreported phase transition temperature (≈ 0°C) with the spectrum 2500 cm?1 blue-shifted from that of the liquid. The results are discussed utilizing the partial Rydberg nature of the excited cycloalkane states.  相似文献   

10.
The potassium iminophosphanide complex [K4(thf)3(Me3SiNPEt2)2(OSiMe2OSiMe2O)]2 has been obtained by a melt reaction of Me3SiNPEt3 with potassium hydride at 140 °C in the presence of silicon grease (—OSiMe2—)n and subsequent crystallization from thf solution. The colourless moisture sensitive single crystals are characterized by X‐ray diffraction: Space group P1¯, Z = 1, lattice dimensions at —70 °C: a = 1135.9(3), b = 1250.0(3), c = 1866.1(4) pm, α = 92.65(1)°, β = 100.80(1)°, γ = 93.57(1)°, R1 = 0.0604. The centrosymmetric dimeric cluster aggregate is formed by two of the eight potassium ions which are connected with the central oxygen atom of both the (OSiMe2OSiMe2O)2— chains as well as with one of their terminal O atoms each. The remaining potassium ions are connected with the phosphorus atoms of the iminophosphanide groups (Me3SiNPEt2) as well as with its nitrogen atoms. They are terminally solvated by thf molecules.  相似文献   

11.
The 13C NMR spectrum observed upon mixing lithium dimethylcuprate and t-butyl cinnamate in toluene-d8/THF at ?70°C shows the signals of the olefinic carbons shifted to lower δ values. These are attributed as due to a π-complex formed by coordination of copper to the carbon—carbon double bond of the cinnamate.  相似文献   

12.
The thermally stimulated depolarization current (TSDC) technique has been used to study the slow molecular mobility of polysulfone in the glassy state and in the glass transformation region, i.e., in the temperature ranging from ?155 to 183 °C. Since the polysulfone is a rigid polymer without polar side-groups, a broad and low-intensity secondary relaxation was detected in the temperature region from ?120 °C up to the glass transition; the activation energy of the motional modes of this secondary relaxation is in the range between 35 and 100 kJ mol?1. The glass transition temperature of polysulfone provided by the TSDC technique is T M = T g = 176 °C (at 4 °C min?1). The relaxation time at this temperature is τ(T g) = 33 s and the fragility index was found to be m = 91. Our results are compared with literature values obtained by dynamic mechanical analysis and by dielectric relaxation spectroscopy. The amorphous polysulfone was also characterized by DSC; a glass transition signal with an onset at T on = 185.5 ± 0.3 °C (heating rate 10 °C min?1) was detected, with ΔC p = 0.21 ± 0.01 J g?1 °C?1.  相似文献   

13.
The supported bimetallic Fe—Pd/SiO2 catalysts with the different Fe (0.025—8 mass.%) and Pd (0.05—3.2 mass.%) loadings were synthesized by the incipient wetness impregnation of support. The samples were heat-treated under different conditions (calcination in air at 240—350 °C or reduction in an H2 flow at 400 °C). The X-ray phase analysis revealed the formation of Pd0, α-Fe2O3 and Fe3O4 phases after calcination of the samples at 240—260 °C. The reduction of the calcined Fe—Pd samples in an H2 flow at 400 °C enables the formation of Fe0 nanoparticles of size 17—20 nm. The synthesized catalytic systems were studied in the selective hydrogenation of phenylacetylene at room temperature and atmospheric pressure in a solvent (ethanol, propanol). The catalytic properties of the Fe—Pd catalysts depend on the nature of solvent, catalyst composition, and thermal treatment conditions. The application of the Fe—Pd bimetallic catalysts with a low Pd loading of 0.05—0.1 mass.% made it possible to reach the high activity and selectivity to styrene (91%) at the complete conversion of phenylacetylene.  相似文献   

14.
In tris(tert-butyl)­phosphine selenide, C12H27PSe, all the methyl ligands are disordered over two sites in the ratio 70/30. The mol­ecule displays crystallographic C3 symmetry. The bond angles at the P atom are distorted tetrahedral [C—P—C 110.02 (5)° and Se=P—C 108.91 (5)°]. The P—C and P=Se bond lengths are 1.908 (1) and 2.1326 (6) Å, respectively. A comparison of the structural data of the complete series of tris(tert-butyl)­phosphine chalcogenides (tBu3PO, tBu3PS, tBu3PSe and tBu3PTe) with the corresponding data of other phosphine chalcogenides substituted by smaller organic groups shows the great influence of the bulky tert-butyl ligands.  相似文献   

15.
A first‐principles mathematical model for emulsion polymerization was reduced by using a hybrid mathematical model composed by artificial neural networks (ANN) and material balances. The goal was to have an accurate model that may be integrated fast enough to be used for online optimization purposes. In the reduced model the polymerization rate and the instantaneous weight‐average molecular weight were calculated by means of artificial neural networks. These ANNs were incorporated to first‐principles material balances. The accuracy of the reduced model under a wide range of conditions was assessed. Savings in computer time were achieved by using the reduced model, which makes it suitable for online optimization purposes.

Effect of the temperature on the cumulative weight‐average molecular weight: first principles mathematical model (—); (ANN2) and hybrid model predictions: (▵) 50 °C, (▪) 60 °C(training), (▿) 70 °C(validation), (•) 80 °C, (○) 90 °C.  相似文献   


16.
Stabilised titania sols were prepared using an additive free particulate sol-gel route, via electrostatic stabilisation mechanism, with various processing parameters. Peptisation temperature, 50°C and 70°C, and TiO2 concentration, 0.1, 0.2 and 0.4 molar, were chosen as processing parameters during sol preparation. Results from TiO2 particle size and zeta potential of sols revealed that the smallest titania hydrodynamic diameter (13 nm) and the highest zeta potential (47.7 mV) were obtained for the sol produced at the lower peptisation temperature of 50°C and lower TiO2 concentration of 0.1 M. On the other hand, between the sols prepared at 70°C, smaller titania particles (20 nm) and higher zeta potential (46.3 mV) were achieved with increasing TiO2 concentration up to 0.4 M. X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) results of produced powders annealed at different temperatures showed that the 300°C annealed powder made from 0.1 M sol prepared at 50°C was a mixture of anatase and brookite, corresponding to a major phase of anatase (∼95% estimated), with the smallest average crystallite size of 1.3 nm and the highest specific surface area (SSA) of 193 m2/g. Furthermore, increasing TiO2 concentration up to 0.4 molar for the sols prepared at 70°C resulted in decreasing the average crystallite size (1.9 nm at 300°C) and increasing SSA (116 m2/g at 300°C) of the powders annealed at different temperatures. Anatase-to-rutile phase transformation temperature was increased with decreasing peptisation temperature down to 50°C, whereas TiO2 concentration had no effect on this transition. Anatase percentage increased with decreasing both peptisation temperature and TiO2 concentration. Such prepared powders can be used in many applications in areas from photo catalysts to gas sensors.  相似文献   

17.
The polydiacetylene (PDA) from the bis-n-propylurethane of 5,7-dodecadiyne-1,12-diol (PUDO) undergoes a first order phase transition near 135°C that is associated with a color change from blue at temperatures below the transition to red at temperatures above the transition. We have studied PDA-PUDO by solid state 13C nuclear magnetic resonance (NMR) spectra using cross polarization and magic angle spinning (CP-MAS) techniques at temperatures between 25° and 140°C. As observed previously, the acetylene carbon shift moves up field as the temperature is raised above the transition temperature. In addition, near 130°C, the oxymethylene carbon shows 3 resonances, indicating multiple side chain conformations as the PDA undergoes the phase transition.  相似文献   

18.
The dielectric behavior of poly(diethyl siloxane) supports the adiabatic calorimetric findings of Beatty and Karasz. In particular, a sub-Tg transition is observed near ?180°C at 100 Hz, the glass transition near ?135°C at 100 Hz, and a first-order transition near ?70°C (crystal–crystal transformation). This glass-transition temperature is the lowest reported polymeric glass transition for polymers.  相似文献   

19.
Strontium phosphate apatites containing different amounts of copper were prepared by a solid state reaction at 1100 °C or by arc melting above 1600 °C in air. The samples were characterized by X‐ray diffraction, ICP analysis, scanning electron microscopy, IR spectroscopy, MAS—1H—NMR, diffuse reflectance spectroscopy, and SQUID magnetometry. X‐ray crystal structure determination was carried out for a single crystal obtained from the melt. The compound is formulated as Sr5(PO4)3(CuO2)1/3 and has an apatite structure (space group P63/m, a = 9.7815(4)Å, c = 7.3018(4)Å, Z = 2) with linear CuO23— ions occupying hexagonal channels. For solid state synthesized samples, Rietveld refinement of powder XRD patterns was performed. The samples obtained at 1100 °C acquire the composition Sr5(PO4)3CuxOHy, with x changing from 0.01 to 0.62 and y < 1—x. The copper content can be increased to x = 0.85 by annealing in argon at 950 °C. The compounds represent a hydroxyapatite in which part of the protons is substituted by Cu+ and Cu2+ ions. The ions form linear O—Cu—O units which are progressively condensed creating the Cu—O—Cu bridges on increasing copper content. IR and NMR data testify existence of OH groups, non‐disturbed and disturbed by neighboring Cu atoms. In the electron spectra, the samples exhibit absorption bands at 7800‐7900, 14200‐14500 and 17500‐17550 cm—1, which were assigned to Cu2+ d‐electron transitions. By annealing the sample with x = 0.1 in oxygen at 800 °C copper is fully oxidized while retaining in channels in unusual for Cu2+ linear coordination.  相似文献   

20.
In view of a known structural phase transition at 800—875 °C and the by 10 times increased luminescence of Mn2+ in the high‐temperature phase, low‐ (LT) and high‐temperature (HT) polymorphs of CaMn0.5Zr1.5(PO4)3 are prepared by sol—gel reaction of Mn(O‐Ac)2, Ca(NO3)2, ZrOCl2, and NH4H2PO4 in ethylene glycol followed by a final annealing (700 or 900 °C, 20 h, resp.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号