首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Within a trans‐disciplinary project between Mexico (Instituto Nacional de Antropología e Historia) and Austria (Weltmuseum Wien), the feather headdress, a unique and most renowned pre‐Columbian ‘Arte Plumaria’ artifact from the 16th Century was studied extensively. Among other investigations concerning the materiality of the headdress, noninvasive handheld X‐ray fluorescence (XRF) analysis was carried out with a handheld instrument to detect the possible presence of inorganic pesticides and pigments and to verify the composition of the metal decorations. The measurements provided rich qualitative and even quantitative information. The use of inorganic pesticides (arsenic, bromide and lead containing compounds), the composition of the original gold decoration plates and the later added brass plates were confirmed. A method was established to define the thickness of the gilding of the later added plates. There was not found evidence on the use of inorganic pigments to produce marks on the constructive parts of the headdress. Handheld XRF measurements can be extremely useful for noninvasive on site investigation of sensitive museum artifacts, but generally require the application of a thorough analytical methodology for the proper interpretation and quantification of the results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Museum curators and archaeologists use analytical science to provide important information on artworks and objects. For example, scientific techniques provide information on artwork elemental composition, origin and authenticity, and corrosion products, while also finding use in the day-to-day conservation of many historical objects in museums and archaeological sites around the world. In this work two special cases are being discussed. In the first part of our work, physicochemical studies of an icon on a metal substrate were carried out using non-destructive, qualitative analysis of pigments and organic-based binding media, employing various microscopic and analytical techniques, such as Optical Fluorescence Microscopy, XRF, and Gas Chromatography. In the second part of our work, laser cleaning of late Roman coins has been performed using a Q-switched Nd:YAG laser (1064 nm, 6 ns) and a GaAlAs diode laser (780 nm, 90 ps). The corrosion products have been removed, while we observe increased concentrations in Ag, which is the main material of the silver plating found in late Roman coins.  相似文献   

3.
Novel confocal X‐ray fluorescence (XRF) spectrometer was designed and constructed for 3D analysis of elementary composition in the surface layer of spatially extended objects having unlimited chemical composition and geometrical shape. The main elements of the XRF device were mounted on a moving frame of a commercial 3D printer. The XRF unit consists of a silicon drift detector and a low‐power transmission‐type X‐ray tube. Both the excitation and secondary X‐ray beams were formed and regulated by simple collimator systems in order to create a macro confocal measuring setup. The spatial accuracy of the mechanical stages of the 3D printer achieved was less than 5 μm at 100‐μm step‐size. The diameter of the focal spot of the confocal measuring arrangement was between 1.5 and 2.0 mm. The alignment of the excitation and secondary X‐ray beams and the selection of the measuring spot on the sample surface were ensured by two laser beams and a digital microscope for visualization of the irradiated spot. The elements of the optical system together with the XRF spectrometer were mounted on the horizontal arm of the 3D printer, which mechanical design is capable of synchronized moving the full spectroscopic device within vertical directions. Analytical capability and the 3D spatial resolution of the confocal spectrometer were determined. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
耿书群  贾文宝  黑大千  程璨 《强激光与粒子束》2018,30(1):016005-1-016005-5
为了讨论PGAI技术分析的准确性,并验证冷中子和热中子应用于PGAI技术的可行性,通过蒙特卡罗模拟计算软件对PGAI技术理想化模型进行了研究,采用高准直的冷中子及热中子束和高纯锗探测器,对一块5 cm× 5 cm×1 cm均匀铁单质样品进行了模拟计算及图像重建,选取的等效体积大小为1 cm×1 cm×1 cm。结果显示:两种能量中子可以用于PGAI技术实现元素分布测量,但无论使用何种能量中子,由于物料体效应带来的中子自屏效应、中子散射效应以及伽马射线自吸收作用,即便在对均匀单质样品进行测量时,图像重建结果也无法保证各位置元素响应的一致性。因此,在后续工作中,需理清PGAI物理机制,建立相应的修正模型。  相似文献   

5.
The photostimulated luminescence (PSL) is the basis for the digital image formation of image plates (IPs). However, the PSL decreases exponentially with the increasing of the elapsed time between the exposure and the IP scanning (t), and consequently, there is a fading of the digital image. The purpose of this paper is to investigate the relationship between IPs physical structure and elemental composition with the fading behavior. Three different types of IPs, with distinct resolutions, were analyzed. The fading behavior with the time, t, has been measured and correlated with their physical structure. Furthermore, micro X-ray fluorescence (μXRF) analysis was used to provide information on the elemental composition of this layer. The results showed that standard resolution plate have larger grains, thicker sensitive layer, and generate a bigger effect of image fading. The μXRF technique showed that, to compensate the low emission, the high-resolution IP has a higher concentration of Br and Sr.  相似文献   

6.
Neutron radiation meets the demand for a versatile diagnostic probe for collecting information from the interior of large, undisturbed museum objects or archaeological findings. Neutrons penetrate through coatings and corrosion layers deep into centimetre-thick materials, a property that makes them ideal for non-destructive examination of objects for which sampling is impractical or unacceptable. A particular attraction of neutron techniques for archaeologists and conservation scientists is the prospect of locating hidden materials and structures inside objects. Time-of-flight (TOF) neutron diffraction allows for the examination of mineral and metal phase contents, crystal structures, grain orientations, and microstructures as well as micro- and macro strains. A promising application is texture analysis which may provide clues to the deformation history of the material, and hence to specific working processes. Here we report on instructive examples of TOF neutron diffraction, including phase analyses of medieval Dutch tin-lead spoons, texture analyses of bronze specimens as well as of 16th-century silver coins. PACS 61.12.-q; 81.05.Bx; 81.70.Jd  相似文献   

7.
利用毛细管X光透镜搭建了三维共聚焦微束X射线荧光谱仪,处在激发道的多毛细管X射线会聚透镜和处在探测道的多毛细管X射线平行束透镜处于共聚焦状态,该共聚焦结构降低了X射线荧光光谱的背底,从而有利于降低的X射线荧光分析技术的探测极限。在上述共聚焦结构中,多毛细管X射线会聚透镜和多毛细管X射线平行束透镜的焦斑重合形成共聚焦微元,探测器只能探测到来自该共聚焦微元内的X射线荧光信号,当该共聚焦微元在样品移动时,就可利用该共聚焦技术原位无损得到样品内部的三维X射线荧光信息。该共聚焦技术使用的多毛细管X射线会聚透镜具有103量级的功率放大倍数,从而降低了该共聚焦技术对高功率X射线源的依赖程度,即利用低功率普通X射线源就可以设计毛细管X光透镜共聚焦X射线荧光技术。利用上述共聚焦微束X射线荧光谱仪对两种岩矿样品进行三维无损分析,在其中一种岩石中发现:Fe浓度大的区域Cu的浓度也大,这在一定程度上反映了岩矿自然生长的机理。实验结果证明:该共聚焦X射线荧光技术可以在不破坏样品情况下分析岩矿样品中元素成分组成和元素三维分布情况。该共聚焦三维微束X射线荧光技术在矿石勘察、玉器选材和鉴别、石质食用器皿、“赌石”和家用石质地板检测等领域具有潜在的应用。  相似文献   

8.
针对中国聚变工程实验堆(CFETR)水冷陶瓷增殖剂包层(WCCB)基本方案,进行了中子学试验模块初步设计与分析。试验模块由3个氚增殖区、2个中子倍增区、3个冷却板以及第一壁、钨保护层、背板组成,并在试验模块中放置碳酸锂探测器进行氚测量。通过MCNP输运程序和IAEA发布的聚变评价核数据库FENDEL-2.1对试验模块中子学性能进行评估,获得了试验模块各区域的中子能谱以及氚产生率(TPR)值;各个区域中子径向通量以及由中子能谱所得到的边缘效应,表明内部区域能谱最能代表原包层的中子能谱;加反射层能提高试验模块的TPR值,综合考虑能谱,TPR以及经济等因素,加钢反射层是较好的选择。  相似文献   

9.
针对中国聚变工程实验堆(CFETR)水冷陶瓷增殖剂包层(WCCB)基本方案,进行了中子学试验模块初步设计与分析.试验模块由3个氚增殖区、2个中子倍增区、3个冷却板以及第一壁、钨保护层、背板组成,并在试验模块中放置碳酸锂探测器进行氚测量.通过MCNP输运程序和IAEA发布的聚变评价核数据库FENDEL-2.1对试验模块中子学性能进行评估,获得了试验模块各区域的中子能谱以及氚产生率(TPR)值;各个区域中子径向通量以及由中子能谱所得到的边缘效应,表明内部区域能谱最能代表原包层的中子能谱;加反射层能提高试验模块的TPR值,综合考虑能谱,TPR以及经济等因素,加钢反射层是较好的选择.  相似文献   

10.
11.
土壤重金属的污染影响着农作物的产量和质量。传统的土壤重金属检测方法步骤繁琐、检测费用高且速度慢。利用X射线荧光光谱(XRF)分析技术检测土壤中重金属含量,具有处理简单、现场、快速、无损等优点。由于土壤背景复杂,包含大量噪声和无关信息,建立XRF校正模型前,对光谱的预处理能有效的去除不相干信息,保留有用信息,对XRF预测模型的精度有重要影响。主要研究光谱预处理方法对重金属含量预测模型精度的影响。首先,采用向前间隔偏最小二乘(FiPLS)作为校正模型,对比了无预处理、去趋势处理(DT)、标准正态变量变换(SNV)、多元散射校正(MSC)、小波去噪(WT)、SNV+DT、卷积平滑(SG)+一阶导数、卷积平滑(SG)+二阶导数等7种不同预处理条件下的土壤重金属模型的检测精度。初步结果表明,多元散射校正预处理方法效果较好,与原始光谱相比,相关系数r从原始的0.988提高到0.990,预测均方根误差RMSEP、相对误差平均从原来的20.809和0.166分别降低到19.051和0.121。其次,在多元散射校正预处理方法的基础上,针对多元散射校正方法以线性表达式描述非线性关系的局限性,提出了局部加权线性回归多元散射校正(LWLRMSC)和偏最小二乘多元散射校正(PLSMSC),并比较了它们的建模效果。LWLRMSC是基于加权思想,在预测一个点的值时,选择适当的核函数和权重分配策略进行预测点的线性回归,来解决简单线性回归的欠拟合状况;PLSMSC是基于PLS建模思想,考虑了自变量和因变量的最大相关性,来减少拟合误差及失真问题。结果表明,PLSMSC具有最佳的预处理效果,五种重金属Cu,Zn,As,Pb,Cr预测值和实际值的R分别为0.989,0.973,0.991,0.989和0.986,RMSEP分别为8.805,58.360,7.671,12.549和20.851,相比于传统的MSC方法不仅在精度方面有大幅度的提升,且具有更好的泛化性能,能消除光谱噪声,提升有效信息贡献度,为土壤重金属含量预测模型选取合适的预处理方法提供了理论支撑。  相似文献   

12.
The grey pottery figure manufactured in the Western-Han Dynasty (175-118 B.C.) and the clay gathered from the same site of Beidongshan in Xuzhou have been studied by X-ray Diffraction(XRD). X-ray Fluorescence (XRF), and Mössbauer spectroscopy. They were simultaneously fired under the same conditions in different atmospheres at various temperature up to 1100°C. This study deals with the original firing atmosphere, original firing temperature and its provenance. The information mentioned above can be inferred from the method of the refiring pottery and the firing clay. The results of the original firing temperature deduced from both of them are in goodself agreement. It is found that the values of the Mössbauer parameters for the unrefired pottery figure are approximately the same as those for the clay fired at 950°C for five hours in a reduced atmosphere. The XRF analysis confirmed the locality of this pottery figure.  相似文献   

13.
Confocal three dimensional (3D) micro X-ray fluorescence (XRF) spectrometer based on a polycapillary focusing X-ray lens (PFXRL) in the excitation channel and a polycapillary parallel X-ray lens (PPXRL) in the detection channel was developed. The PFXRL and PPXRL were placed in a confocal configuration. This was helpful in improving the signal-to-noise ratio of the XRF spectra, and accordingly lowered the detection limitation of the XRF technology. The confocal configuration ensured that only the XRF signal from the confocal micro-volume overlapped by the output focal spot of the PFXRL and the input focal spot of the PPXRL could be detected by the detector. Therefore, the point-to-point information of XRF for samples could be obtained non-destructively by moving the sample located at the confocal position. The magnitude of the gain in power density of the PFXRL was 10(3). This let the low power conventional X-ray source be used in this confocal XRF, and, accordingly, decreased the requirement of high power X-ray source for the confocal XRF based on polycapillary X-ray optics. In this paper, we used the confocal 3D micro X-ray fluorescence spectrometer to non-destructively analyzed mineral samples and to carry out a 3D point-to-point elemental mapping scanning, which demonstrated the capabilities of confocal 3D micro XRF technology for non-destructive analysis elements composition and distribution for mineral samples. For one mineral sample, the experimental results showed that the area with high density of element of iron had high density of copper. To some extent, this reflected the growth mechanisms of the mineral sample. The confocal 3D micro XRF technology has potential applications in such fields like the analysis identification of ore, jade, lithoid utensils, "gamble stone" and lithoid flooring.  相似文献   

14.
The portable XRF spectrometer has been applied in situ for the non-destructive elemental mapping of the pigment components of the XV c. mural painting and frescos of the Little Christopher chamber in the Main Town Hall of Gdańsk, Poland. For a sufficiently large data collection the principal component analysis (PCA) was applied in order to associate the most intense lines of the elements Ca, Cu, Fe, Pb, and Hg in the XRF spectra with the palette of colors: white, brown, green, blue, red, yellow, and black observed in the painting. This allowed to limit the number of extractions of the micro-samples for the complementary Raman measurements thus assuring the practically non-destructive character of the entire analysis. The reliable identification of the pigment compositions was based on coincidence of the XRF, PCA and the Raman results which confirmed the presence of the chalk, malachite, azurite, red lead, mars red, mars yellow and candle black in the historical paints, except of the carbon-based black pigment being out of the XRF detection range. Different hues of the green paint were specified and the variety of the red and brown ones was ascribed to compositions of the Pb- and Fe-based red pigments (Fe2O3 and Pb3O4) with addition of the vermilion (HgS) and carbon black, in agreement with literature. The traces of elements: Ba and Sr, Sb and Mo, and also Cd, were ascribed to the impurities of Ca, those of some ochre pigments, and to the soluble Cd salts, respectively.  相似文献   

15.
Among non-destructive evaluations and methodologies—the important set of analyses which preserve the integrity of the tested object—neutron imaging techniques, and neutron computerized tomography in particular, represent powerful tools. Although they have been considered more an amusement for scientists rather than an effective tool for engineers until few years ago, it can be stated that they can now provide valuable quantitative results in many circumstances of interest, being the only available choice in some specific cases. This wider interest and the attempt to give neutron imaging a certain prominence reflect themselves in the birth of an international group of people involved in the field of neutron research; the so-called ENRWG (European Neutron Radiography Working Group). Connected to a general interest and a diffuse curiosity in the fascinating interactive world of INTERNET there is also the possibility, since last year, to get information about neutron radiography state of the art and current projects from a free-access WWW site. As a consequence of these fervent activities, a new deal in studies of advanced materials, sources, detectors and algorithms is now growing to promote and to develop the capabilities of neutron imaging techniques after a long period during which the interest in neutron physics and in their applications was limited to selected specialists involved in the nuclear-energy production. The results of this effort will not be limited to improved technological processes, but will include an improved knowledge in relevant fields of nuclear and material science.  相似文献   

16.
A novel and evolutionary multiplexing technique is introduced in this work where electronic grade single crystal chemical vapor deposition (CVD) diamond plates are multiplexed together in both a series and parallel configuration, sending electronic signals from each diamond plate to a single electronic acquisition system. Modeling of this novel multiplexing technique consisted of MCNPX simulations and significant post processing. The model developed allowed for the characterization of charge collection efficiency corrections to the location of charge creation to determine the effect of increasing detection medium size with respect to charge collection direction on the measured pulse height spectrum. This work was conducted to show that this technique is theoretically capable of replacing a single crystal diamond plate of similar size for use in neutron detection without the immediate need of advancing CVD diamond growth technologies. Further, this work indicates the expected pulse height evolution from a singular large single crystal diamond if such a crystal is produced in the future. The results of this work indicate that a 14.1 MeV neutron induced energy pulse of 8.4 MeV (due to the 12C(n,αo)9Be reaction) in the pulse height spectrum has its energy resolution broadened by a factor of two to a total value of 0.225 percent for a multiplexed array with a thickness from 0.05 to 1 cm and an intrinsic detection efficiency of 25.4 percent for a 1 cm thick diamond crystal. It is also qualitatively discussed that the number of secondary neutron interactions with the diamond detector array may be about 5 percent. The results of this work indicate the capability of multiplexing diamond plates together for spectroscopic neutron detection with a combined intrinsic detection efficiency and energy resolution greater than any other diamond-based neutron detection system reported to date.  相似文献   

17.
Portable instruments that can perform non-destructive analysis techniques are of great importance due to their high applicability, which can extend beyond the controlled laboratory environment. Their importance has long been recognised in the archaeometric field where art historians, conservators and restorers perform analyses on art works without causing any damage and without the need to move the objects to specialized laboratories. The X-ray fluorescence (XRF) technique is a popular choice in the archaeometric field for in situ investigations with portable instrumentations. This enables qualitative (elemental analysis) and quantitative (chemical composition) information retrieval from the objects of interest. Quantitative analyses can be performed under the assumption that the sample is homogeneous and its surface material is the same as in the rest of the object. This work aims to expose various details, including the strengths and the weaknesses of typical XRF analyses in the case of surface alterations, focusing on portable implementations. The chosen approach will be in line with certain issues considered important in archaeometry; nevertheless the presented findings are valid beyond this. We will focus our discussion on two kinds of objects that can be found in the cultural heritage field: artefacts that had their surface material altered due to prolonged exposure to the environment and artefacts that have been gilded. Our work also includes a critically examined overview of relevant information available in the literature. The core of our analysis focuses on two main distinct cases, that of multilayer objects and that of bronzes. PACS 78.66.Bz; 78.70.En; 33.20.Rm  相似文献   

18.
当前基于燃耗信任制的乏燃料密集贮存方式,对乏燃料水池格架中子吸收材料的可靠性和有效性,都提出了更高的要求。在格架材料生产和使用过程中需要对其中子吸收性能(硼含量)进行无损检测和监测,针对这两个方面的需求,我们研制了核电厂乏燃料水池格架B4C_Al中子吸收材料检测设备。该检测设备主要由中子源(3枚252Cf放射源)、中子探测器(10个锂玻璃组成的探测阵列)、中子屏蔽准直和慢化系统等组成,通过测量中子透射率来推算待测样板上各个测量点的10B面密度,从而达到对于乏燃料水池贮存格架材料B4C_Al合金硼含量的无损检测。使用该套设备进行了两种B4C_Al合金20 cm×30 cm悬挂样片的检测,结果可靠。该B4C_Al材料中子吸收性能检测设备为国内首创,推动了我国含硼中子吸收材料的无损检测研究,能为核电厂乏燃料水池的临界安全监测提供有力保障。  相似文献   

19.
《中国物理 B》2021,30(9):96106-096106
The neutron Bragg-edge imaging is expected to be a new non-destructive energy-resolved neutron imaging technique for quantitatively two-dimensional or three-dimensional visualizing crystallographic information in a bulk material, which could be benefited from pulsed neutron source. Here we build a Bragg-edge imaging system on the General Purpose Powder Diffractometer at the China Spallation Neutron Source. The residual strain mapping of a bent Q235 ferrite steel sample has been achieved with a spectral resolution of 0.15% by the time-of-flight neutron Bragg-edge imaging on this system. The results show its great potential applications in materials science and engineering.  相似文献   

20.
最近杰斐逊实验室测量了中子的两个弹性电磁形状因子之比GEn/GMn,它反映了中子内部的电磁分布并能帮助理解中子的内部结构.传统的相对论组分夸克模型在解释质子的两种电磁形状因子之比GEp/GMp是很成功的,但在解释中子的该比值时计算值比实验值要低.为了解释这种现象,我们在相对论组分夸克模型框架下计算考察了SU(6)破缺效应的贡献.发现考虑该破缺效应后的计算结果同实验符合有明显改善.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号