首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Carbon material was produced using an inductively coupled thermal plasma torch system of 35 kW and a conical shape reactor. The carbon nanopowders were obtained by plasma decomposition of methane at various flow rates and show a uniform microstructure throughout the reactor. The product has a crystalline graphitic structure, with a stacking of between 6 and 16 planes and a nano-flake morphology with particles dimensions of approximately 100 nm long, 50 nm wide and 5 nm thick. Nitrogen was also introduced in some synthesis experiments along with the methane precursor using flow rates of 0.1 and 0.2 slpm. The resulting product has the same structural properties and the nitrogen is incorporated into the graphitic structure through pyridinic type bonds.  相似文献   

2.
为选择适于作为碳纤维原料的煤沥青,对三种中低温煤沥青的预处理和组成结构进行了研究,同时对其中的太钢煤沥青进行了热缩聚制取中间相沥青的结构变化分析。研究分析结果表明,只要经过合适的工艺路线进行处理,这三种煤沥青都有可能作为沥青基碳纤维的原料。  相似文献   

3.
《Liquid crystals》1992,12(4):603-611
Chitobiose octaalkanoates and chitotriose hendecaalkanoates with varying acyl pendant lengths were synthesized and their mesophase properties studied. Both series of derivatives showed an enantiotropic mesophase in a wide temperature region below 200°C. An X-ray diffraction analysis revealed the mesophase to be of a hexagonal columnar type, in which the columns built up by a periodic stacking of chitobiose or chitotriose cores are packed into a two dimensional hexagonal lattice. The mesophase is thus similar to the hexagonal ordered columnar (Dho) phase in discotics. Compared with cello-oligosaccharide counterparts, the diameter of the column is fairly large and the stacking period somewhat short; these can be interpreted as resulting from the intermolecular hydrogen bonding which is formed between the secondary amide group in the C2 position and the ester group.  相似文献   

4.
Studying disorder in graphite-based systems by Raman spectroscopy   总被引:3,自引:0,他引:3  
Raman spectroscopy has historically played an important role in the structural characterization of graphitic materials, in particular providing valuable information about defects, stacking of the graphene layers and the finite sizes of the crystallites parallel and perpendicular to the hexagonal axis. Here we review the defect-induced Raman spectra of graphitic materials from both experimental and theoretical standpoints and we present recent Raman results on nanographites and graphenes. The disorder-induced D and D' Raman features, as well as the G'-band (the overtone of the D-band which is always observed in defect-free samples), are discussed in terms of the double-resonance (DR) Raman process, involving phonons within the interior of the 1st Brillouin zone of graphite and defects. In this review, experimental results for the D, D' and G' bands obtained with different laser lines, and in samples with different crystallite sizes and different types of defects are presented and discussed. We also present recent advances that made possible the development of Raman scattering as a tool for very accurate structural analysis of nano-graphite, with the establishment of an empirical formula for the in- and out-of-plane crystalline size and even fancier Raman-based information, such as for the atomic structure at graphite edges, and the identification of single versus multi-graphene layers. Once established, this knowledge provides a powerful machinery to understand newer forms of sp(2) carbon materials, such as the recently developed pitch-based graphitic foams. Results for the calculated Raman intensity of the disorder-induced D-band in graphitic materials as a function of both the excitation laser energy (E(laser)) and the in-plane size (L(a)) of nano-graphites are presented and compared with experimental results. The status of this research area is assessed, and opportunities for future work are identified.  相似文献   

5.
Adsorption and structural properties of inverse carbon replicas of two ordered siliceous P6mm and Ia3d mesostructures have been studied by nitrogen adsorption, powder X-ray diffraction, and transmission electron microscopy. These carbon replicas were prepared by filling the pores of SBA-15 and KIT-6 siliceous templates with various carbon precursors followed by carbonization and silica dissolution. Sucrose, furfuryl alcohol, acenaphthene, mesophase pitch, and petroleum pitch were used to obtain inverse carbon replicas of SBA-15 and KIT-6. While structural properties of the resulting ordered mesoporous carbons are mainly determined by the hard template used, their adsorption properties depend on the type of the carbon precursor.  相似文献   

6.
Photoelectron spectroscopy on pyrolytic carbon films revealed a main part of carbon atoms in graphitic planes and a smaller part of functional groups with oxygen bonded to carbon atoms. Oxygen totalled a share of 10 at% and more of the carbon coating. The films with a turbostratic structure consist of nearly parallel oriented atomic layers of hexagonal rings with dimensions in the nanometer scale, which is well known from HREM investigations. The oxygen atoms are proposed to saturate the numerous dangling bonds around these individual atomic planes. The oxygen atoms form double bonds or bridges between carbon atoms. Received: 15 July 1998 / Revised: 28 January 1998 / Accepted: 2 February 1998  相似文献   

7.
The present study demonstrates the interfacial interplay between transition metal salt (TMS) additive and range of non-aqueous lyotropic mesophases. Structural aspect reveals the substantial influence of the additive addition on the self-assembly and packing of micelles as intense growth of hexagonal planes was seen in the vicinity of the pre-existed lamellar mesophase (as the surfactant concentration loomed to the higher value in the parent binary mixture). Such structural modulations certainly resulted from reduction in optimal surface area of head group and packing parameter under the influence of interfacial interactions amid charged counter ions and metal salt additive. The origin and thermal stability of hexagonal ordering have been addressed and discussed.  相似文献   

8.
We present a rational and simple methodology to fabricate highly conductive nitrogen-doped ordered mesoporous carbon with a graphitic wall structure by the simple adjustment of the carbonization temperature of mesoporous carbon nitride without the addition of any external nitrogen sources. By simply controlling the heat-treatment temperature, the structural order and intrinsic properties such as surface area, conductivity, and pore volume, and the nitrogen content of ordered graphitic mesoporous carbon can be controlled. Among the materials studied, the sample heat-treated at 1000 °C shows the highest conductivity, which is 32 times higher than that for the samples treated at 800 °C and retains the well-ordered mesoporous structure of the parent mesoporous carbon nitride and a reasonable amount of nitrogen in the graphitic framework. Since these materials exhibit high conductivity with the nitrogen atoms in the graphitic framework, we further demonstrate their use as a support for nanoparticle fabrication without the addition of any external stabilizing or size-controlling agent, as well as the anode electrode catalysts. Highly dispersed platinum nanoparticles with a size similar to that of the pore diameter of the support can be fabricated since the nitrogen atoms and the well-ordered porous structure in the mesoporous graphitic carbon framework act as a stabilizing and size-controlling agent, respectively. Furthermore the Pt-loaded, nitrogen-doped mesoporous graphitic carbon sample with a high conductivity shows much higher anodic electrocatalytic activity than the other materials used in the study.  相似文献   

9.
The nematic twist-bend (NTB) liquid crystal phase possesses a local helical structure with a pitch length of a few nanometres and is the first example of spontaneous symmetry breaking in a fluid system. All known examples of the NTB phase occur in materials whose constituent mesogenic units are aromatic hydrocarbons. It is not clear if this is due to synthetic convenience or a bona fide structural requirement for a material to exhibit this phase of matter. In this work we demonstrate that materials consisting largely of saturated hydrocarbons can also give rise to this mesophase.  相似文献   

10.
Producing macrocyclic mesogens that are responsive to guest encapsulation presents a significant challenge. Cyclo[6]aramides, a type of macrocycle with a hydrogen‐bond‐constrained backbone, exhibit thermotropic lamellar, discotic nematic, hexagonal, and rectangular columnar mesophases over a considerably wide temperature range, including at room temperature. Additionally, cyclo[6]aramides show unusual mesophase transitions from lamellar to hexagonal columnar phase mediated by macrocyclic host–guest (H–G) interactions between the macrocycles and alkylammonium salts. The phase transition, triggered by an organic guest engaging in H–G interactions with a macrocyclic cavity, provides a novel strategy for manipulating the properties of liquid‐crystalline materials. The crystal structure of a homologous cyclo[6]aramide reveals a disk‐shaped, near‐planar molecular backbone that facilitates intermolecular π–π stacking and leads to columnar assembly.  相似文献   

11.
The formation of the structure of a highly organized silicate mesoporous mesophase material (MMM) with hexagonal packing via the S+Ireaction pathway and MMM-based aluminosilicates (Al,Si)-MMM and titanosilicates (Ti,Si)-MMM with different concentrations of the elements are considered. The structural, textural, and catalytic properties of the materials are studied.  相似文献   

12.
高分子结构是高分子性能的重要物质基础,对其结构进行合理的划分,有助于准确把握高分子物理知识体系的内在脉络。高分子结构层次的划分不仅要思考静态时特定质点在空间的堆砌特征,而且也要考虑结构出现运动或是变化的基本单元。按照质点尺度的不同,高聚物的结构可以分为单一高分子结构(链结构)、多个高分子结构(凝聚结构)和多种高分子结构(织态结构)三个主要层次。其中,化学因素所确定的链结构层次包括相对分子质量以及构造、构型等同分异构体形式;物理因素所确定的结构层次为高分子局部质点集合在空间的堆砌和排列;链段是容易被忽视、但又是最为重要的运动(变化)单元。  相似文献   

13.
基于X射线径向分布函数法(RDF)原理,本文发展了一种研究煤中有序碳原子层堆垛结构的新方法,N个碳原子层平行堆垛的几率PN正比于其约化径向分布函数在相应层间距处的跃变GN。动用这一方法,本文研究了三个不同煤阶镜质组试样的煤大分子有序碳分数,芳香碳分数、脂环碳分数以及碳原子层多层堆垛的几率、堆垛平均高度等煤结构参数。  相似文献   

14.
Several new liquid-crystalline indene and pseudoazulene systems are reported. These molecules give rise to either columnar hexagonal mesophases and/or columnar plastic phases. The unique nature of these compounds stems from their non-classical discotic structure. Although the molecules have rigid aromatic cores, they lack terminal tails and instead the polarizable atoms (S, halogens) or polar groups (CN, CO) act as unusual soft parts. On the basis of many structurally related materials, we conclude that for this type of compound molecular stacking in the solid state is a prerequisite for the appearance of a columnar mesophase, although other intermolecular interactions within the layers are also important in establishing liquid-crystalline order. The behavior reported for these mesomorphic molecules opens up new possibilities in the search for related molecular interactions that might be useful for the construction of supramolecular architectures with particular properties.  相似文献   

15.
Mesoporous carbons (MCs) with a high surface area (up to 900 m2/g), large pore volume (up to 2.1 cm3/g), high mesopore ratio (94%), and high yield (70%) were successfully prepared from an AR mesophase pitch, using a commercially nanosized silica template. The removal of the template provided some larger mesopores of 25-50 nm (pore I) with a surface area of ca. 300 m2/g, while the successive carbonization opened the closed pores within the carbon body to give smaller mesopores of 2-10 nm (pore II) with a similar surface area. During the carbonization of pitch precursor, the evaporation of volatile components swells the carbon to introduce the second mesopores among the domains and even microdomain units because of their rearrangements and overlappings in the process. The addition of iron salt with the silica template resulted in a remarkable increase of the surface area (ca. 300 m2/g) by introducing mesopores of 3-5 nm. The resultant MCs maintained some graphitizable natures derived from the anisotropic precursor. Their graphitization at 2400 degrees C provided the graphitic structure with large surface areas (270-460 m2/g) and mesoporosity.  相似文献   

16.
Under the conditions studied for the synthesis of mesophase materials with alkylpyridinium halides an increase in the density of packing of these molecules in the encapsulated micelles was observed with an increase in the length of the alkyl radicals. The difference in the density of packing of these surface active reagents (SAR) depended to a considerable extent on the perfection of the hexagonal structure and the characteristic absorption properties of the mesophase materials of MCM-41 type.  相似文献   

17.
The use of blends in which a mesogen induces mesomorphism into a non-mesogenic compound has made possible the self-organization of phthalocyanine--[60]fullerene (Pc-C60) dyads into liquid crystals. Pc-C60 dyads 1, 2, or 3, in which two photoactive units are brought together by a phenylenevinylene spacer, have been synthesized through a Heck reaction that links 4-vinylbenzaldehyde to a monoiodophthalocyanine precursor, followed by standard cycloaddition of azomethine ylides--generated from the formylPc derivative and N-methylglycine--to one of the double bonds of C60. The mesomorphic and thermal properties of different mixtures formed by the liquid-crystalline phthalocyanine 4 and dyads 1, 2, or 3 were examined using polarizing optical microscopy (POM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). DSC diagrams of the blends show clear transitions from the crystalline state to a mesophase, and the measured structural parameters obtained from the powder diffraction experiments are consistent with a discotic hexagonal columnar (Col h) structure. Considering that segregation in domains of separated molecules of Pc-C60 dyad and phthalocyanine 4 would preclude mesomorphism due to the mismatch in the column diameter and to the lack of mesogenic character of the pure dyads, a predominance of alternating stacking is proposed. Additionally, the observed decrease in the calculated density of the blend mesophases relative to the mesophase of pure compound 4 is important evidence in this direction.  相似文献   

18.
The effect of the interior structure of carbon nanomaterials on their electrochemical properties is not well understood. We report here the electron transfer rate (ETR) of ferrocene (Fc) molecules covalently attached to the exposed end of carbon nanofibers (CNFs) in an embedded nanoelectrode array. The ETR in normal DC voltammetry was found to be limited by the conical graphitic stacking structure interior of CNFs. AC voltammetry, however, can cope with this intrinsic materials property and provide over 100 times higher ETR, likely by a new capacitive pathway. This provides a new method for high‐performance electroanalysis using CNF nanoelectrodes.  相似文献   

19.
We have synthesised and studied lactic acid derivatives based on chlorine substituted molecular core, which is created from two biphenyls linked by an ester, and terminated with one or two lactic units in a chiral chain. The compounds with one lactate group exhibit cholesteric phase with rather short helix pitch (200 nm) in a broad temperature range. On contrary, compound with two lactate units reveals a stable TGBA phase, with transition temperatures substantially lower than those for one-lactate derivatives. We have studied mesophase behaviour and electro-optical properties, mostly based on the texture observation in polarising microscope. Additionally, we have used AFM and x-ray techniques to confirm mesophase identification and establish structural properties.  相似文献   

20.
CNN news: N-doped carbon nanoneedles (CNNs) are synthesized by self-assembling core-shell nanostructures and nanoreactors around cellulose nanoneedles, and subsequent graphitization. The resulting graphitic nanoneedles (see picture) have well-organized graphitic multi-layers and large proportions of N-doped edge planes. The materials serve as efficient metal-free electrocatalysts for hydrazine oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号