首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A simple and ubiquitously present group, free amine, is used as a directing group to synthesize axially chiral biaryl compounds by PdII‐catalyzed atroposelective C?H olefination. A broad range of axially chiral biaryl‐2‐amines can be obtained in good yields with high enantioselectivities (up to 97 % ee). Chiral spiro phosphoric acid (SPA) proved to be an efficient ligand and the loading could be reduced to 1 mol % without erosion of enantiocontrol in gram‐scale synthesis. The resulting axially chiral biaryl‐2‐amines also provide a platform for the synthesis of a set of chiral ligands.  相似文献   

2.
The first enantioselective Satoh–Miura‐type reaction is reported. A variety of C?N axially chiral N‐aryloxindoles have been enantioselectively synthesized by an asymmetric rhodium‐catalyzed dual C?H activation reaction of N‐aryloxindoles and alkynes. High yields and enantioselectivities were obtained (up to 99 % yield and up to 99 % ee). To date, it is also the first example of the asymmetric synthesis of C?N axially chiral compounds by such a C?H activation strategy.  相似文献   

3.
Improving the reactivity and selectivity is a long pursuing goal in C—H functionalization reactions. In line with this goal, a well‐designed bidentate 2‐(pyridine‐yl)isopropyl amine (PIP amine) directing group was developed by our group to achieve the activation of unbiased methylene C(sp3)–H activation, which also found its broad applications in C—H activation reactions catalyzed by base metals, such as Cu, Ni, Co and Fe, to form various C—C and C—X bonds. Moreover, PIP amine has also been applied in the strategic step toward the total synthesis of aeruginosin marine natural products. Its highly tunable structure has triggered the design of a series of chiral auxiliaries for diastereoselective C—H activation. More recently, Pd(II)‐catalyzed enantioselective functionalization of unbiased methylene C(sp3)–H bonds enabled by the cooperative effects between PIP amine and chiral ligands with axially chiral binaphthyl scaffold has also been realized. In this account, we briefly summaries the journey of developing PIP amine for C—H activation, from controlling the reactivity and regioselectivity to stereoselectivity.  相似文献   

4.
A cationic Ir(I)–tolBINAP complex catalyzed an enantioselective C–C bond formation, which was initiated by secondary sp3 C–H bond cleavage adjacent to nitrogen atom. A wide variety of 2-(alkylamino)pyridines and alkenes were selectively transformed into the corresponding chiral amines with moderate to almost perfect enantiomeric excesses. Alkynes were also investigated as coupling partners. The effect of alkyl structure in substrates and directing groups were studied. This transformation represents the first example of a highly enantioselective C–H bond activation of a methylene group, not at allylic or benzylic position.  相似文献   

5.
Herein, we report a regioselective alkenyl electrophile synthesis from unactivated olefins that is based on a direct and regioselective C?H thianthrenation reaction. The selectivity is proposed to arise from an unusual inverse‐electron‐demand hetero‐Diels–Alder reaction. The alkenyl sulfonium salts can serve as electrophiles in palladium‐ and ruthenium‐catalyzed cross‐coupling reactions to make alkenyl C?C, C?Cl, C?Br, and C?SCF3 bonds with stereoretention.  相似文献   

6.
A simple and ubiquitously present group, free amine, is used as a directing group to synthesize axially chiral biaryl compounds by PdII-catalyzed atroposelective C−H olefination. A broad range of axially chiral biaryl-2-amines can be obtained in good yields with high enantioselectivities (up to 97 % ee). Chiral spiro phosphoric acid (SPA) proved to be an efficient ligand and the loading could be reduced to 1 mol % without erosion of enantiocontrol in gram-scale synthesis. The resulting axially chiral biaryl-2-amines also provide a platform for the synthesis of a set of chiral ligands.  相似文献   

7.
Russian Journal of Applied Chemistry - Pd-catalyzed direct oxidative olefination of arenes with olefins via C–H activation is described in the absence of any chelating directing groups. For...  相似文献   

8.
The first catalytic and enantioselective C? H alkylation of ferrocene derivatives with various alkenes was achieved. A cationic iridium complex, having a chiral diene ligand, and an isoquinolyl moiety as a directing group are essential for regioselective and enantioselective C? H bond activation.  相似文献   

9.
Axial‐to‐central chirality transfer is an important strategy to construct chiral centers, where the axially chiral reagents are mostly limited to atropomerically stable ones. Reported herein is a RhIII‐catalyzed enantioselective spiroannulative synthesis of nitrones. The coupling proceeds via C?H arylation to give an atropomerically metastable biaryl, followed by intramolecular dearomative trapping under oxidative conditions with high degree of chirality transfer.  相似文献   

10.
RhIII‐catalyzed oxidative C? H/C? H cross‐coupling between (hetero)aromatic carboxylic acids and various heteroarenes has been accomplished to construct highly functionalized ortho‐carboxy‐substituted bi(hetero)aryls. The use of a carboxy group as the directing group obviates tedious steps for installation and removal of extra directing groups, and enables a facile one‐step synthesis of ortho‐carboxy bi(hetero)aryls. The method provides opportunities for rapid assembly of a library of important fluorene and coumarin‐type poly‐heterocycles through intramolecular electrophilic substitution or oxidative lactonization. As illustrative examples, the strategy developed herein greatly streamlines accesses to a variety of appealing polyheterocycles such as DTPO (5H‐dithieno[3,2‐b:2′,3′‐d]pyran‐5‐one), CPDTO (cyclopentadithiophen‐4‐one), and indenothiophenes.  相似文献   

11.
Axially chiral biaryls are ubiquitous structural motifs of biologically active molecules and privileged ligands for asymmetric catalysis. Their properties are due to their configurationally stable axis, and therefore, the control of their absolute configuration is essential. Efficient access to atropo‐enantioenriched biaryl moieties through asymmetric direct C?H activation, by using enantiopure sulfoxide as both the directing group (DG) and chiral auxiliary, is reported. The stereoselective oxidative Heck reactions are performed in high yields and with excellent atropo‐stereoselectivities. The pivotal role of 1,1,1,3,3,3‐hexafluoropropanol (HFIP) solvent, which enables a drastic increase in yield and stereoselectivity of this transformation, is evidenced and investigated. Finally, the synthetic usefulness of the herein disclosed transformation is showcased because the traceless character of the sulfoxide DG allows straightforward conversions of the newly accessed, atropopure sulfoxide‐biaryls into several differently substituted axially chiral scaffolds.  相似文献   

12.
Reported herein is the first example of a transition‐metal‐catalyzed internal oxidative C? H/C? H cross‐coupling between two (hetero)arenes through a traceless oxidation directing strategy. Without the requirement of an external metal oxidant, a wide range of phenols, including phenol‐containing natural products, can undergo the coupling with azoles to assemble a large library of highly functionalized 2‐(2‐hydroxyphenyl)azoles. The route provides an opportunity to rapidly screen white‐light‐emitting materials. As illustrative examples, two bis(triphenylamine)‐bearing 2‐(2‐hydroxyphenyl)oxazoles, which are difficult to access otherwise, exhibit bright white‐light emission, high quantum yield, and thermal stability. Also presented is the first example of the white‐light emission, in a single excited‐state intramolecular proton transfer system, of 2‐(2‐hydroxyphenyl)azoles, thus highlighting the charm of C? H activation in the discovery of new organic optoelectronic materials.  相似文献   

13.
Achieving selective C?H activation at a single and strategic site in the presence of multiple C?H bonds can provide a powerful and generally useful retrosynthetic disconnection. In this context, a directing group serves as a compass to guide the transition metal to C?H bonds by using distance and geometry as powerful recognition parameters to distinguish between proximal and distal C?H bonds. However, the installation and removal of directing groups is a practical drawback. To improve the utility of this approach, one can seek solutions in three directions: 1) Simplifying the directing group, 2) using common functional groups or protecting groups as directing groups, and 3) attaching the directing group to substrates via a transient covalent bond to render the directing group catalytic. This Review describes the rational development of an extremely simple and yet broadly applicable directing group for PdII, RhIII, and RuII catalysts, namely the N‐methoxy amide (CONHOMe) moiety. Through collective efforts in the community, a wide range of C?H activation transformations using this type of simple directing group have been developed.  相似文献   

14.
[Cp*RhIII]‐catalyzed C? H activation of arenes assisted by an oxidizing N? O or N? N directing group has allowed the construction of a number of hetercycles. In contrast, a polar N? O bond is well‐known to undergo O‐atom transfer (OAT) to alkynes. Despite the liability of N? O bonds in both C? H activation and OAT, these two important areas evolved separately. In this report, [Cp*RhIII] catalysts integrate both areas in an efficient redox‐neutral coupling of quinoline N‐oxides with alkynes to afford α‐(8‐quinolyl)acetophenones. In this process the N? O bond acts as both a directing group for C? H activation and as an O‐atom donor.  相似文献   

15.
The atroposelective synthesis of axially chiral styrenes remains a formidable challenge due to their relatively lower rotational barriers compared to the biaryl atropoisomers. Herein, we describe the construction of axially chiral styrenes through PdII‐catalyzed atroposelective C?H olefination, using a bulky amino amide as a transient chiral auxiliary. Various axially chiral styrenes were produced with good yields and high enantioselectivity (up to 95 % yield and 99 % ee). Carboxylic acid derivatives of the resulting axially chiral styrenes showed superior enantiocontrol over the biaryl counterparts in CoIII‐catalyzed enantioselective C(sp3)?H amidation of thioamide. Mechanistic studies suggest that C?H cleavage is the enantioselectivity‐determining step.  相似文献   

16.
Asymmetric pallada‐electrocatalyzed C?H olefinations were achieved through the synergistic cooperation with transient directing groups. The electrochemical, atroposelective C?H activations were realized with high position‐, diastereo‐, and enantio‐control under mild reaction conditions to obtain highly enantiomerically‐enriched biaryls and fluorinated N?C axially chiral scaffolds. Our strategy provided expedient access to, among others, novel chiral BINOLs, dicarboxylic acids and helicenes of value to asymmetric catalysis. Mechanistic studies by experiments and computation provided key insights into the catalyst's mode of action.  相似文献   

17.
An original and recyclable chiral bidentate aniline‐sulfoxide‐based directing group has been developed. This auxiliary allows challenging stereoselective Pd‐catalyzed direct functionalization of small cycloalkanes through C–aryl and C–alkyl bond formation. Although moderate diastereoselectivities are observed, both optically pure enantiomers of the highly functionalized products can be obtained separately by simple silica gel chromatography and cleavage of the chiral auxiliary. This strategy was further applied to the preparation of enantiomerically pure 1,2,3‐trisubstituted cyclopropane carboxylic acid derivatives, with three stereogenic centers and bearing both alkyl and aromatic substituents. These molecular scaffolds are not yet reported in the literature. The synthetic utility of this approach is validated by the chiral auxiliary being readily cleaved and recovered posteriori to the C?H activation step, without deterioration of its optical purity. Finally, an unprecedented palladacycle intermediate generated through C?H activation of the cyclopropane moiety has been isolated and fully characterized. Initial DFT calculations shed additional light on the reactivity of this original intermediate.  相似文献   

18.
Palladium‐catalyzed regio‐ and diastereoselective C?H functionalization with bromoalkynes and electronically unbiased olefins is reported. The picolinamide directing group enables the formation of putative 5 and 6‐exo‐metallacycles as intermediates to afford monoalkynylated products in up to 91 % yield in a stereospecific fashion. The systematic study reveals that substrates with a wide range of substituents on the olefin and bromoalkyne coupling partners are tolerated. Chemoselective transformations were demonstrated for the obtained amides, olefins, and alkynes.  相似文献   

19.
The discovery of proper ligands to simultaneously modulate the reactivity and effectively control the stereoselectivity is a central topic in the field of enantioselective C?H activation. Herein, we reported the synthesis of axially chiral biaryls by Pd‐catalyzed atroposelective C?H olefination. A novel chiral spiro phosphoric acid, STRIP, was identified as a superior ligand for this transformation. A broad range of axially chiral quinoline derivatives were synthesized in good yields with excellent enantioselectivities (up to 98 % ee). Density functional theory was used to gain a theoretical understanding of the enantioselectivities in this reaction.  相似文献   

20.
A palladium‐catalyzed cascade reaction based on the trapping of transient alkyl–PdII intermediates with arynes encompassing a C?H activation step has been developed. This synthetic pathway gives rise to hetero‐spirocyclic scaffolds containing a biaryl motif, and opens up new synthetic strategies in the design of cascade reactions since it gathers several aspects of Pd chemistry, i.e., intra‐ and intermolecular carbopalladation of unsaturated species, C?H activation and C?C coupling processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号