首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bishnu Prasad Joshi 《Talanta》2009,78(3):903-1129
A novel fluorescent peptide sensor containing tryptophan (donor) and dansyl fluorophore (acceptor) was synthesized for monitoring heavy and transition metal (HTM) ions on the basis of metal ion binding motif (Cys-X-X-X-Cys). The peptide probe successfully exhibited a turn on and ratiometric response for several heavy metal ions such as Hg2+, Cd2+, Pb2+, Zn2+, and Ag+ in aqueous solution. The enhancements of emission intensity were achieved in the presence of the HTM ions by fluorescent resonance energy transfer (FRET) and chelation enhanced fluorescence (CHEF) effects. The detection limits of the sensor for Cd2+, Pb2+, Zn2+, and Ag+ were lower than the EPA's drinking water maximum contaminant levels (MCL). We described the fluorescent enhancement, binding affinity, and detection limit of the peptide probe for HTM ions.  相似文献   

2.
The thermodynamics of and the kinetic parameters controlling the sequestration of the toxic heavy‐metal ion CdII from aqueous media by using a novel material consisting of glassy carbon microspheres (10–20 μm in diameter) chemically modified with L ‐cysteine methyl ester are presented. In an effort to reduce the cost and increase the efficiency of toxic‐metal‐ion removal, this modification strategy was expanded to attach L ‐cysteine methyl chemically ester to less‐expensive graphite powders (2–20 μm in diameter), and the thermodynamic and kinetic parameters of the sequestration of CdII, CuII, and AsIII toxic metal ions are presented. It was found that the use of chemically modified graphite powder greatly increased both the rate and the amount of metal ions removed from aqueous media. This work has important potential applications to filtration of drinking water and environmental remediation.  相似文献   

3.
Highly selective and low‐cost optical nanosensors of organic–inorganic hybrid materials for heavy metal ions detection have been prepared via the functionalization of mesoporous silica (SBA‐16) with chalcone fluorescent chromophores. The successful attachment of organic chalcone moieties and preservation of original structure of SBA‐16 after the anchoring process were confirmed by extensive characterizations using various techniques like Fourier transform infrared and UV–visible spectroscopies, transmission electron microscopy, nitrogen adsorption–desorption isotherms, low‐angle X‐ray diffraction and thermogravimetric analysis. The colorimetric behaviour, selectivity and sensitivity were also investigated. The optical nanosensors respond selectively to heavy metal ions, such as Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+, with observable colour changes in 0.01 M Tris–HCl aqueous buffer solution. Also, the optical sensing ability of the investigated nanosensors to the mentioned metal ions was investigated using steady‐state absorption and emission techniques. Significant increase in the absorption spectra and a static quenching in the emission spectra are observed upon adding various concentrations of the studied metal ions. The spectral changes as well as the observable colour changes suggest that the investigated nanosensors are suitable for simple, economic, online analysis and remote design of these toxic metal ions with fast kinetic responses. Finally, the low detection limits for all the studied metals are in good agreement with those recommended by both the US Environmental Protection Agency and World Health Organization, except for Hg2+ and Cd2+, indicating that the investigated nanosensors have hypersensitivity, selectivity and better recognition for all the studied metal ions.  相似文献   

4.
The global sensing science in the past couple of years has seen brilliant successes in the designs and syntheses of diverse fluorescent and colourimetric chemosensors of ultra-high selectivities and sensitivities for the tracking of metal ions in environmental and biological systems. Amongst the most widely employed fluorophores for the development of fluorescent and colourimetric chemosensors is the 1, 8-naphthalimide fluorophore, which is distinctive due to its possession of outstanding photophysical properties unequalled by other fluorophores. Many reported literatures are replete with employment of 1, 8-naphthalimide as a unique fluorophore for the construction of chemosensors for the monitoring of metal ions (such as Cu2+, Hg2+, Cr3+, Fe3+, Zn2+, Ag+, Pd2+, Al3+, Ba2+, Au3+, and Bi2+, and/or a combination of any of them) with remarkable results documented from various labs. This review summarises recent advances in the development of representative fluorescent and colourimetric 1, 8-naphthalimide-based chemosensors reported within the past 7 years. It is believed that gaining insights into the various highlighted examples would help to refine our knowledge of the field and pave the way for further advancement in the constructions of fluorescent and colourimetric 1, 8-naphthalimide-based chemosensors of improved sensing parameters and practical application values.  相似文献   

5.
Ligand L (4‐(7‐nitrobenzo[1,2,5]oxadiazole‐4‐yl)‐1,7‐dimethyl‐1,4,7,10‐tetra‐azacyclododecane) is a versatile fluorescent sensor useful for CuII, ZnII and CdII metal detection, as a building block of fluorescent metallo‐receptor for halide detection, and as an organelle marker inside live cells. Ligand L undergoes a chelation‐enhanced fluorescence (CHEF) effect upon metal coordination in acetonitrile solution. In all three complexes investigated the metal cation is coordinatively unsaturated; thus, it can bind secondary ligands as anionic species. The crystal structure of [Zn L Cl](ClO4) is discussed. CuII and ZnII complexes are quenched upon halide interaction, whereas the [Cd L ]2+ species behaves as an OFF–ON sensor for halide anions in acetonitrile solution. The mechanism of the fluorescence response in the presence of the anion depends on the nature of the metal ion employed and has been studied by spectroscopic methods, such as NMR spectroscopy, UV/Vis and fluorescence techniques and by computational methods. Subcellular localization experiments performed on HeLa cells show that L mainly localizes in spot‐like structures in a polarized portion of the cytosol that is occupied by the Golgi apparatus to give a green fluorescence signal.  相似文献   

6.
In the title centrosymmetric binuclear complex, [Cd2(C17H11N3O)4(H2O)2](ClO4)4, the CdII ion assumes a distorted octahedral geometry. There are π–π stacking interactions between the pyridine and 1,10‐phenanthroline ring systems of adjacent ligands at the same CdII centre. Intermolecular hydrogen bonds between the coordinated aqua ligand and the O atom of a keto group connect adjacent complex cations into extended chains. Hydrogen bonds also exist between the complex cations and the perchlorate anions. Compared with the fluorescence spectrum of the organic ligand, the complex displays strong fluorescent emission and an ipsochromic shift of the emission peaks, which may be attributed to the structural character.  相似文献   

7.
The asymmetric unit of the title complex, [CdCl2(C14H12N4O2S)2]n, consists of one CdII ion located on the crystallographic inversion centre, one 4‐benzoyl‐1‐isonicotinoylthiosemicarbazide ligand and one chloride ligand. The central CdII ion adopts a distorted octahedral coordination geometry formed by two pyridyl N atoms of two ligands, two S atoms of two other ligands and two chloride ligands. The thiosemicarbazide ligands act as bridges, linking the metal ions into a two‐dimensional layered structure parallel to the bc plane. Intermolecular N—H...O hydrogen bonds and C—H...π interactions exist between adjacent layers.  相似文献   

8.
We have synthesized two derivatives of alkylanthracene covalently bonded to 1,3-alternate calix[4]aza-crown-6 at the nitrogen position to study the effect of alkali metal ion complexation on the emission properties of anthracene fluorophore. The mono- and dianthryl-substituted probes are weakly fluorescent because their emission is partially quenched by photoinduced electron transfer (PET) from the nitrogen lone pair to the excited singlet state of anthracene. Upon complexation of alkali metal ions (e.g. K+, Cs+) by the crown moiety, the nitrogen lone pair can no longer participate in the PET process causing an enhancement in the emission of anthracene fluorophore (fluorescent turn on). The maximum fluorescence enhancement observed upon complexation of cesium ions by mono- and dianthryl-substituted calix[4]aza-crown-6 relative to the uncomplexed form was 8.5- and 11.6-fold, respectively.  相似文献   

9.
Single‐, double‐, and multi‐walled carbon nanotubes (SWCNTs, DWCNTs, and MWCNTs), and two oxidized MWCNTs with different oxygen contents (2.51 wt % and 3.5 wt %) were used to study the effect of the wall number and surface functionalization of CNTs on their adsorption capacity and adsorption–desorption hysteresis for heavy metal ions (NiII, CdII, and PbII). Metal ions adsorbed on CNTs could be desorbed by lowering the solution pH. Adsoprtion of heavy metal ions was not completely reversible when the supernatant was replaced with metal ion‐free electrolyte solution. With increasing wall number and amount of surface functional groups, CNTs had more surface defects and exhibited higher adsorption capacity and higher adsorption–desorption hysteresis index (HI) values. The coverage of heavy metal ions on the surface of CNTs, solution pH, and temperature affect the metal ion adsorption–desorption hysteresis. A possible shift in the adsorption mechanism from mainly irreversible to largely reversible processes may take place, as the amount of metal ions adsorbed on CNTs increases. Heavy metal ions may be irreversibly adsorbed on defect sites.  相似文献   

10.
The efficient transformation of the hexadentate bispidinol 1 into carbamate derivatives yields functional bispidines enabling convenient functionalization for targeted imaging. The BODIPY‐substituted bispidine 3 combines a coordination site for metal ions, such as radioactive 64CuII, with a fluorescent unit. Product 3 was thoroughly characterized by standard analytical methods, single crystal X‐ray diffraction, radiolabeling, and photophysical analysis. The luminescence of ligand 3 was found to be strongly dependent on metal ion coordination: CuII quenches the BODIPY fluorescence, whereas NiII and ZnII ions do not affect it. It follows that, in imaging applications with the positron emitter 64CuII, residues of its origin from enriched 64Ni and the decay products 64NiII and 64ZnII, efficiently restore the fluorescence of the ligand. This allows for monitoring of the emitted radiation as well as the fluorescence signal. The stability of the 64CuII? 3 complex is investigated by transmetalation experiments with ZnII and NiII, using fluorescence and radioactivity detection, and the results confirm the high stability of 64CuII? 3 . In addition, metal complexes of ligand 3 with the lanthanide ions TbIII, EuIII, and NdIII are shown to exhibit emission of the BODIPY ligand and the lanthanide ion, thus enabling dual emission detection.  相似文献   

11.
The complexation behavior of a bis‐strapped porphyrin ligand ( 1 ) towards CdII has been investigated by 1H and 113Cd NMR spectroscopy with the help of X‐ray diffraction structures. The presence of an overhanging carboxylic acid group on each side of the macrocycle is responsible for the instantaneous insertion of the metal ion(s) at room temperature, and allows the formation of bimetallic species with unusual coordination modes at the origin of unique dynamic behaviors. In the absence of base, a C2‐symmetric bimetallic complex ( 1Cd2 ) is readily formed, in which the porphyrin acts as a bridging ligand. Both CdII ions are bound to the N core and to a COO? group of a strap. In contrast, the presence of a base induces a two‐step binding process with the successive formation of mono and bimetallic species ( 1Cd and 1Cd?CdOAc ). Formally, a CdII ion is first inserted into the N core and experiences a strong out‐of‐plane (OOP) displacement due to the binding of an overhanging carbonyl group in an apical position. A second CdII ion then binds exclusively to the strap on the opposite side, in a so‐called hanging‐atop (HAT) coordination mode. These two complexes display a fluxional behavior that relies on intraligand migration processes of the metal ion(s). In 1Cd , the CdII ion exchanges between the two equivalent overhanging apical ligands by funneling through the porphyrin ring. In 1Cd?CdOAc , the two CdII ions exchange their coordination mode (HAT?OOP) in a concerted way while staying on their respective side of the macrocycle, in a so‐called Newton’s cradle‐like motion. The intramolecular pathway was notably evidenced by variable temperature 113Cd heteronuclear NMR experiments. This coupled motion of the CdII cations is under allosteric control; the addition of an acetate anion (the allosteric effector) to the “resting” C2‐symmetric complex 1Cd2 affords the dissymmetric complex 1Cd?CdOAc and triggers equilibrium between its two degenerate states. The rate of the swinging motion further depends on the concentration of AcO?, with a higher concentration leading to a slower motion. As compared with the related PbII and BiIII bimetallic complexes, the Newton’s cradle‐like motion proceeds faster with the smaller CdII ion. These results open the way to novel multistable devices and switches.  相似文献   

12.
In the corrole homologue, 6,11,16‐triarylbipyricorrole, the bipyrrole unit is replaced by a 2,2′‐bipyridine unit. This modification effectively alters the corrole N4 coordination sphere from the trianionic [(NH)3N] to the monoanionic [N3NH] state. The newly formed monoanionic core stabilizes ZnII ions with enhanced emission properties. The enhanced emission was further utilized for metal ion sensing studies and exploited for the selective detection of ZnII ions.  相似文献   

13.
Abstract

A sensitive fluorescent sensing membrane has been developed for the rapid detection of sodium ions by immobilizing the membrane onto a glass slide surface. The membrane consists of a fluorophore, an ionophore, a plasticizer, and an anionic site of a lipophilic salt in a polyvinyl chloride (PVC) matrix. Based on the ion‐exchange response and photoinduced electron transfer mechanisms, the ionophore first captures target sodium ions from the solution into the membrane, and then the fluorophore emits a fluorescent signal based on the amount of sodium ions captured. To effectively transmit the signal and avoid the leaching of the fluorophore from the membrane, a newly synthesized fluorescent compound was used as a fluorophore in the fabrication of the membrane. Due to the special structure of the fluorophore, it remains trapped inside the membrane and thus gives a reliable fluorescent signal when sodium ions exist in the solution. Calix[4]arene tetraester acts as a sodium ion carrier, the crown size in its molecular structure is compatible with the sodium ionic size, making the membrane highly selective to sodium ions. Furthermore, the membrane demonstrates a rapid response to sodium ions—less than 1 min is required to reach a stable fluorescent signal. The sodium content in various real samples, such as mineral water, urine, and serum, were determined by the sensing membrane. The results highly correlate with the atomic absorption spectrometry method, confirming the validity of the fluorescent sensing membrane for sodium ion detection.  相似文献   

14.
A novel calix[4]arene derivative with pyrene fluorophores at the upper rim and tetraester ionophores at the lower rim was synthesized in six steps, and its structure was proved by NMR and ESI-MS spectroscopies. Furthermore, the chemosensing behavior of the host compound for alkali and alkaline earth metal ions was investigated by fluorescence spectroscopy. The obtained results show that the calixarene host can selectively bind sodium ion with the complexation stability constant of 2190 mol−1·L. The complexation with sodium ion can pronouncedly induce the excimer emission to decrease and the monomer emission to increase, whereas the addition of the other alkali and alkaline earth metal ions does not cause appreciable changes in the fluorescence spectrum of the host compound. The present calix[4]arene derivative displays potential application as fluorescent chemosensor for sodium ion. Supported by the National Natural Science Foundation of China (Grant Nos. 20421202, 20673061 & 20703025) and the 111 Project (Grant No. B06005)  相似文献   

15.
李广科a  b  刘敏a  b  杨国强a  陈传峰  a  黄志镗  a 《中国化学》2008,26(8):1440-1446
我们方便地合成了上沿修饰四丹磺酰胺基团的杯[4]芳烃衍生物1,发现该化合物在含50%水的乙腈中显示出对汞离子高选择性和灵敏性的识别作用,竞争实验表明多数金属离子对其检测干扰较小。机理研究结果表明荧光萃灭源于由丹磺酰胺基团到汞离子的光致电子转移过程。另外,通过研究1和1-Hg2+的荧光衰减实验,以及对比双丹磺酰胺杯[4]芳烃2和单丹磺酰胺杯[4]芳烃3对汞离子的识别作用,发现化合物1的四丹磺酰胺基团具有很好的预组织和协同作用。化合物1对汞离子的检测限为3.41×10-6 mol·L-1,这可以使1成为一个潜在的汞离子荧光化学传感器。  相似文献   

16.
This review is aimed at updating the recent development on the metal complexes bearing azolate‐containing chelates that have received a growing attention from both the industrial and academic sectors. Particular emphasis is given to the luminescent metal complexes, for which tridentate and multidentate bonding interactions give rise to both higher ligand field strength and better rigidity versus their bidentate counterparts—consequently, this is beneficial to the chemical stability and emission efficiency needed for applications such as organic light‐emitting diodes and bio‐imaging. Their basic designs involve chelates, such as monoanionic 6‐azolyl 2,2′‐bipyridine, dianionic 2,6‐diazolylpyridine, and 2‐azolyl‐6‐phenylpyridine, and the core metal ion spanning from main group elements, such as GaIII and InIII, to the late transition metal ions such as RuII, OsII, IrIII, and PtII and even the lanthanides. Furthermore, the great versatility of these azolate chelates for assembling the robust and emissive metal complexes, provides bright prospect in future optoelectronic investigations.  相似文献   

17.
Umbrella‐sampling molecular‐dynamics simulations were performed to investigate the water‐exchange reactions of zinc(II), cadmium(II), and mercury(II) ions in aqueous solution. The dissociation of a coordinating water molecule to the M? O distance at 3.34, 3.16, and 3.26 Å for ZnII, CdII, and HgII, respectively, leads the system to a transition state. For ZnII, the first hydration shell is occupied by five spectator water molecules in the transition state, indicating that the water‐exchange reaction proceeds via a dissociative mode of activation. In contrast, the number of spectator water molecules of 5.85 and 5.95 for CdII and HgII, respectively, suggests an associative exchange for these larger metal ions. The average M? O distance of the spectator molecules is shortened by 0.06 Å for the dissociative exchange of ZnII, while it is elongated by 0.04 and 0.03 Å for CdII and HgII, respectively. The water‐exchange rate constants of 4.1×108, 6.8×108, and 1.8×109 s?1 are estimated for ZnII, CdII, and HgII, respectively, at 298 K in terms of the transition‐state theory based on the assumption of a transmission coefficient of unity.  相似文献   

18.
A new bipyridyl derivative 1 bearing rhodamine B as visible fluorophore was designed, synthesized and characterized as a fluorescent and colorimetric sensor for metal ions. Interaction with Cu2+, Zn2+, Cd2+, Hg+, and Hg2+ ions was followed by UV/Vis and emission spectroscopy. Upon addition of these metal ions, different colorimetric and fluorescent responses were observed. “Off-on-off” (Cu2+, Zn2+, and Hg2+) and “off-on” (Hg+ and Cd2+) systems were obtained. Probe 1 was explored to mimic XOR and OR logic operations for the simultaneous detection of Hg+–Cu2+ and Hg+–Zn2+ pairs, respectively. DFT calculations were also performed to gain insight into the lowest-energy gas-phase conformation of free receptor 1 as well as the atomistic details of the coordination modes of the various metal ions.  相似文献   

19.
Na Li 《Talanta》2009,79(2):327-153
Salicylaldehyde hydrazones of 1 and 2 were synthesized and their potential as fluorescent probes for zinc ion was investigated in this paper. Both of the probes were found to show fluorescence change upon binding with Zn2+ in aqueous solutions, with good selectivity to Zn2+ over other metal ions such as alkali/alkali earth metal ions and heavy metal ions of Pb2+, Cd2+ and Hg2+. They showed 1:2 metal-to-ligand ratio when their Zn2+ complex was formed. By introducing pyrene as fluorophore, 2 showed interesting ratiometric response to Zn2+. Under optimal condition, 2 exhibited a linear range of 0-5.0 μM and detection limit of 0.08 μM Zn2+ in aqueous buffer, respectively. The detection of Zn2+ in drinking water samples using 2 as fluorescent probe was successful.  相似文献   

20.
The title metal–organic framework, [Cd3(C12H9O6)2(C10H8N2)2]n, has been synthesized by a solvothermal reaction. The CdII ions are located in CdO4N2 and CdO6 six‐coordinated environments, with the latter CdII ion lying on an inversion centre. The 2,4,6‐trimethylbenzene‐1,3,5‐tricarboxylate ligand (TMBTC) connects the CdII ions to form a two‐dimensional sheet incorporating hourglass‐like [Cd3(COO)6] secondary building units (SBUs). Topologically, taking the TMBTC ligand and the [Cd3(COO)6] SBU as 3‐ and 6‐connected nodes, respectively, the overall two‐dimensional sheet can be simplified to a rare (3,6)‐connected 2‐nodal kgd (Kagomé dual) net with a short Schläfli vertex notation of {43}2{46.66.83}, which further stacks into a three‐dimensional supramolecular framework through π–π stacking interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号