首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A variety of arylethynylsilanes (Ar‐C?C? C6H4? C?C)nSiMe4?n were prepared successfully by reaction of the corresponding chlorosilanes Me4?nSiCln with Ar? C?C? C6H4? C?CM (M=Li, MgBr), which was prepared by treatment of ethynyl(diarylethyne)s Ar? C?C? C6H4? C?CH with BuLi or MeMgBr. The ethynyl(diarylethyne)s were readily prepared in good yields by the double‐elimination method: addition of lithium hexamethyldisilazide to a mixture of ArCH2SO2Ph, TMS? C?C? C6H4? CHO, and ClP(O)(OEt)2, followed by desilylation. In the tetrakis(arylethynyl)silanes (Ar? C?C? C6H4? C?C)4Si thus prepared, through‐space conjugation of four triple bonds on the silicon atom emerges as a result of participation of the silicon orbitals in the acetylenic π orbitals. This participation enhances the emissive quantum yields of arylethynylsilanes with an increase in the number of arylethynyl moieties on silicon: quantum yields of emission (ΦF) of 0.72 for (MeOC6H4? C?C? C6H4? C?C)4Si, 0.53 for (MeOC6H4? C?C? C6H4? C?C)2SiMe2, and 0.47 for MeO‐C6H4? C?C? C6H4? C?CSiMe3 were obtained. Although this enhancement effect was also observed in the phenylethynylarylsilane (MeOC6H4? C?C? C6H4)2SiMe2, the bis(arylethynyl)disilane (MeOC6H4? C?C? C6H4? C?C‐SiMe2)2 exhibited non‐enhanced emission.  相似文献   

2.
The facile one‐pot reaction of the stable N‐heterocyclic silylene LSi: 1 (L?(ArN)C(?CH2) CH?C(Me)(NAr), Ar=2,6‐iPr2C6H3) with Me2Zn, Me3Al, H3Al‐NMe3, and MeLi has been investigated. The silicon(II) atom in 1 is capable of insertion into the corresponding M? C and Al? H bonds under very mild reaction conditions. Thus, Me2Zn furnishes the bis(silyl) zinc complex LSi(Me)ZnSi(Me)L 2 as the sole product, irrespective of the molar ratio of the starting materials applied. Moreover, the reactions of 1 with Me3Al, H3Al‐NMe3, and MeLi lead directly to the 1,1‐addition products LSi(Me)(Al(thf)Me2) 3 , LSi(H)(AlH2(NMe3)) 4 , and LSi(Me)Li(thf)3 5 , respectively. All new compounds 2 – 5 were fully characterized by multinuclear NMR spectroscopy, mass spectrometry, elemental analyses, and single‐crystal X‐ray diffraction analyses.  相似文献   

3.
N‐sulfinylacylamides R‐C(=O)‐N=S=O react with (CF3)2BNMe2 ( 1 ) to form, by [2+4] cycloaddition, six‐membered rings cyclo‐(CF3)2B‐NMe2‐S(=O)‐N=C(R)‐O for R = Me ( 2 ), t‐Bu ( 3 ), C6H5 ( 4 ), and p‐CH3C6H4 ( 5 ) while N‐sulfinylcarbamic acid esters R‐O‐C(=O)‐N=S=O react with 1 to yield mixtures of six‐membered (cyclo‐(CF3)2B‐NMe2‐S(=O)‐N=C(OR)‐O) and four‐membered rings (cyclo‐(CF3)2B‐NMe2‐S(=O)‐N(C=O)OR) for R = Me ( 6 and 9 ), Et ( 7 and 10 ), and C6H5 ( 8 and 11 ). The structure of 5 has been determined by X‐ray diffraction.  相似文献   

4.
The bis(silyl)triazene compound 2,6‐(Me3Si)2‐4‐Me‐1‐(N?N? NC4H8)C6H2 ( 4 ) was synthesized by double lithiation/silylation of 2,6‐Br2‐4‐Me‐1‐(N?N? NC4H8)C6H2 ( 1 ). Furthermore, 2,6‐bis[3,5‐(CF3)2‐C6H3]‐4‐Me‐C6H2‐1‐(N?N? NC4H8)C6H2 derivative 6 can be easily synthesized by a C,C‐bond formation reaction of 1 with the corresponding aryl‐Grignard reagent, i.e., 3,5‐bis[(trifluoromethyl)phenyl]magnesium bromide. Reactions of compound 4 with KI and 6 with I2 afforded in good yields novel phenyl derivatives, 2,6‐(Me3Si)2‐4‐MeC6H2? I and 2,6‐bis[3,5‐(CF3)2? C6H3]‐4‐MeC6H2? I ( 5 and 7 , resp.). On the other hand, the analogous m‐terphenyl 1,3‐diphenylbenzene compound 2,6‐bis[3,5‐(CF3)2? C6H3]C6H3? I ( 8 ) could be obtained in moderate yield from the reaction of (2,6‐dichlorophenyl)lithium and 2 equiv. of aryl‐Grignard reagent, followed by the reaction with I2. Different attempts to introduce the tBu (Me3C) or neophyl (PhC(Me)2CH2) substituents in the central ring were unsuccessful. All the compounds were fully characterized by elemental analysis, melting point, IR and NMR spectroscopy. The structure of compound 6 was corroborated by single‐crystal X‐ray diffraction measurements.  相似文献   

5.
The first hypercoordinate sila[1]ferrocenophanes [fcSiMe(2‐C6H4CH2NMe2)] ( 5 a ) and [fcSi(CH2Cl)(2‐C6H4CH2NMe2)] ( 5 b ) (fc=(η5‐C5H4)Fe(η5‐C5H4)) were synthesized by low‐temperature (?78 °C) reactions of Li[2‐C6H4CH2NMe2] with the appropriate chlorinated sila[1]ferrocenophanes ([fcSiMeCl] ( 1 a ) and [fcSi(CH2Cl)Cl] ( 1 d ), respectively). Single‐crystal Xray diffraction studies revealed pseudo‐trigonal bipyramidal structures for both 5 a and 5 b , with one of the shortest reported Si???N distances for an sp3‐hybridized nitrogen atom interacting with a tetraorganosilane detected for 5 a (2.776(2) Å). Elongated Si? Cipso bonds trans to the donating NMe2 arms (1.919(2) and 1.909(2) Å for 5 a and 5 b , respectively) were observed relative to both the non‐trans bonds ( 5 a : 1.891(2); 5 b : 1.879(2) Å) and the Si? Cipso bonds of the non‐hypercoordinate analogues ([fcSiMePh] ( 1 b ): 1.879(4), 1.880(4) Å; [fcSi(CH2Cl)Ph] ( 1 e ): 1.881(2), 1.884(2)). Solution‐state fluxionality of 5 a and 5 b , suggestive of reversible coordination of the NMe2 group to silicon, was demonstrated by means of variable‐temperature NMR studies. The ΔG of the fluxional processes for 5 a and 5 b in CD2Cl2 were estimated to be 35.0 and 37.6 kJ mol?1, respectively (35.8 and 38.3 kJ mol?1 in [D8]toluene). The quaternization of 5 a and 5 b by MeOTf, to give [fcSiMe(2‐C6H4CH2NMe3)][OTf] ( 7 a‐ OTf) and [fcSi(CH2Cl)(2‐C6H4CH2NMe3)][OTf] ( 7 b‐ OTf), respectively, supported the reversibility of NMe2 coordination at the silicon center as the source of fluxionality for 5 a and 5 b . Surprisingly, low room‐temperature stability was detected for 5 b due to its tendency to intramolecularly cyclize and form the spirocyclic [fcSi(cyclo‐CH2NMe2CH2C6H4)]Cl ( 9 ‐Cl). This process was observed in both solution and the solid state, and isolation and Xray characterization of 9 ‐Cl was achieved. The model compound, [Fc2Si(2‐C6H4CH2NMe2)2] ( 8 ), synthesized through reaction of [Fc2SiCl2] with two equivalents of Li[2‐C6H4CH2NMe2] at ?78 °C, showed a lack of hypercoordination in both the solid state and in solution (down to ?80 °C). This suggests that either the reduced steric hindrance around Si or the unique electronics of the strained sila[1]ferrocenophanes is necessary for hypercoordination to occur.  相似文献   

6.
Organometallic Compounds of the Lanthanides. 139 Mixed Sandwich Complexes of the 4 f Elements: Enantiomerically Pure Cyclooctatetraenyl Cyclopentadienyl Complexes of Samarium and Lutetium with Donor‐Functionalized Cyclopentadienyl Ligands The reactions of [K{(S)‐C5H4CH2CH(Me)OMe}], [K{(S)‐C5H4CH2CH(Me)NMe2}] and [K{(S)‐C5H4CH(Ph)CH2NMe2}] with the cyclooctatetraenyl lanthanide chlorides [(η8‐C8H8)Ln(μ‐Cl)(THF)]2 (Ln = Sm, Lu) yield the mixed cyclooctatetraenyl cyclopentadienyl lanthanide complexes [(η8‐C8H8)Sm{(S)‐η5 : η1‐C5H4CH2CH(Me)OMe}] ( 1 a ), [(η8‐C8H8)Ln{(S)‐η5 : η1‐C5H4CH2CH(Me)NMe2}] (Ln = Sm ( 2 a ), Lu ( 2 b )) and [(η8‐C8H8)Ln{(S)‐η5 : η1‐C5H4CH(Ph)CH2NMe2}] (Ln = Sm ( 3 a ), Lu ( 3 b )). For comparison, the achiral compounds [(η8‐C8H8)Ln{η5 : η1‐C5H4CH2CH2NMe2}] (Ln = Sm ( 4 a ), Lu ( 4 b )) are synthesized in an analogous manner. 1H‐, 13C‐NMR‐, and mass spectra of all new compounds as well as the X‐ray crystal structures of 3 b and 4 b are discussed.  相似文献   

7.
RGa {R=HC[C(Me)N(2,6‐iPr2C6H3)]2} reacts with Sb(NMe2)3 with insertion into the Sb? N bond and elimination of RGa(NMe2)2 ( 2 ), yielding the Ga‐substituted distibene R(Me2N)GaSb?SbGa(NMe2)R ( 1 ). Thermolysis of 1 proceeded with elimination of RGa and 2 and subsequent formation of the bicyclo[1.1.0]butane analogue [R(Me2N)Ga]2Sb4 ( 3 ).  相似文献   

8.
Palladacyclic compounds [Pd(C6H4(C6H5C?O)C?N? R)(N? N)] [X] (R = Et, iPr, 2,6‐iPr2C6H3; N? N = bpy = 2,2′‐bipyridine, or 1,4‐(o,o′‐dialkylaryl)‐1,4‐diazabuta‐1,3‐dienes; [X]? = [BF4]? or [PF6]?) were synthesized from the dimers [{Pd(C6H4(C6H5C?O)C?N? R)(μ‐Cl)}2] and N? N ligands. Their interionic structure in CD2Cl2 was determined by means of 19F,1H‐HOESY experiments and compared with that in the solid state derived from X‐ray single‐crystal studies. [Pd(C6H4(C6H5C?O)C?N? R)(N? N)] [X] complexes were found to copolymerize CO and p‐methylstyrene affording syndiotactic or isotactic copolymers when bpy or 1,4‐(o,o′‐dimethylaryl)‐1,4‐diazabuta‐1,3‐dienes were used, respectively. The reactions with CO and p‐methylstyrene of the bpy derivatives were investigated. Two intermediates derived from a single and a double insertion of CO into the Pd? C bonds were isolated and completely characterized in solution.  相似文献   

9.
10.
A facile and general synthetic pathway for the production of dearomatized, allylated, and C? H bond activated pyridine derivatives is presented. Reaction of the corresponding derivative with the previously reported reagent bis(allyl)calcium, [Ca(C3H5)2] ( 1 ), cleanly affords the product in high yield. The range of N‐heterocyclic compounds studied comprised 2‐picoline ( 2 ), 4‐picoline ( 3 ), 2,6‐lutidine ( 4 ), 4‐tert‐butylpyridine ( 5 ), 2,2′‐bipyridine ( 6 ), acridine ( 7 ), quinoline ( 8 ), and isoquinoline ( 9 ). Depending on the substitution pattern of the pyridine derivative, either carbometalation or C? H bond activation products are obtained. In the absence of methyl groups ortho or para to the nitrogen atom, carbometalation leads to dearomatized products. C(sp3)? H bond activation occurs at ortho and para situated methyl groups. Steric shielding of the 4‐position in pyridine yields the ring‐metalated product through C(sp2)? H bond activation instead. The isolated compounds [Ca(2‐CH2‐C5H4N)2(THF)] ( 2 b ?(THF)), [Ca(4‐CH2‐C5H4N)2(THF)2] ( 3 b ?(THF)2), [Ca(2‐CH2‐C5H3N‐6‐CH3)2(THF)n] ( 4 b ?(THF)n; n=0, 0.75), [Ca{2‐C5H3N‐4‐C(CH3)3}2(THF)2] ( 5 c ?(THF)2), [Ca{4,4′‐(C3H5)2‐(C10H8N2)}(THF)] ( 6 a ?(THF)), [Ca(NC13H9‐9‐C3H5)2(THF)] ( 7 a ?(THF)), [Ca(4‐C3H5‐C9H7N)2(THF)] ( 8 b ?(THF)), and [Ca(1‐C3H5‐C9H7N)2(THF)3] ( 9 a ?(THF)3) have been characterized by NMR spectroscopy and metal analysis. 9 a ?(THF)4 and 4 b ?(THF)3 were additionally characterized in the solid state by X‐ray diffraction experiments. 4 b ?(THF)3 shows an aza‐allyl coordination mode in the solid state. Based on the results, mechanistic aspects are discussed in the context of previous findings.  相似文献   

11.
10α,20α‐Bis(4‐nitrophenyl)calix[4]pyrrole ( 1 ) forms 1:1 complexes with anions of selected aromatic hydroxy acids in which the host orientation within the guest is controlled by a change in the pH value. Some bis‐anionic guests, including those obtained from 4‐hydroxybenzoic acid, 1,4‐ and 1,3‐benzenedicarboxylic acids, induce the self‐assembly of molecular capsules involving two molecules of the receptor. 1H NMR data and solid‐state structures of the 1:1 complex of 1 with p‐C6H4(COOH)(COO?)+NMe4 and the 2:1 capsule [( 1 )2m‐C6H4(COO?)2(+NMe4)2] provide structural details in solution and in the solid state.  相似文献   

12.
A new series of nitro‐substituted bis(imino)pyridine ligands {2,6‐bis[1‐(2‐methyl‐4‐nitrophenylimino)ethyl]pyridine, 2,6‐bis[1‐(4‐nitrophenylimino)ethyl]pyridine, (1‐{6‐[1‐(4‐nitro‐phenylimino)‐ethyl]‐pyridin‐2‐yl}‐ethylidene)‐(2,4,6‐trimethyl‐phenyl)‐amine, and 2,6‐bis[1‐(2‐methyl‐3‐nitrophenylimino)ethyl]pyridine} and their corresponding Fe(II) complexes [{p‐NO2? o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐ Me? p‐NO2}FeCl2 ( 10 ), L2FeCl2 ( 11 ), {m‐NO2? o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐Me? m‐NO2}FeCl2 ( 12 ), and {p‐NO2? Ph? N?C(Me)? Py? C(Me)?N? Mes}FeCl2 ( 14 )] were synthesized. According to X‐ray analysis, there were shortenings of the axial Fe? N bond lengths (up to 0.014 Å) in para‐nitro‐substituted complex 10 and (up to 0.015 Å) in meta‐nitro‐substituted complex 12 versus the Fe(II) complex without nitro groups [{o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐Me}FeCl2 ( 1 )]. Complexes 10 , 12 , and 14 afforded very active catalysts for the production of α‐olefins and were more temperature‐stable and had longer lifetimes than parent non‐nitro‐substituted Fe(II) complex 1 . The reaction between FeCl2 and a sterically less hindered ligand [p‐NO2? Ph? N?C(Me)? Py? C(Me)?N? Ph? p‐NO2] resulted in the formation of octahedral complex 11 . A para‐dialkylamino‐substituted bis(imino)pyridine ligand [p‐NEt2? o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐Me? p‐NEt2] and the corresponding Fe(II) complex [{p‐NEt2? o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐Me? p‐NEt2}FeCl2 ( 16 )] were synthesized to evaluate the effect of enhanced electron donation of the ligand on the catalytic performance. According to X‐ray analysis, there was a shortening (up to 0.043 Å) of the axial Fe? N bond lengths in para‐diethylamino‐substituted complex 16 in comparison with parent Fe(II) complex 1 . © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2615–2635, 2006  相似文献   

13.
Complexes [{Ru(CO)Cl(PiPr3)2}2(μ‐2,5‐(CH?CH)2cC4H2E] (E=NR; R=C6H4‐4‐NMe2 ( 10 a ), C6H4‐4‐OMe ( 10 b ), C6H4‐4‐Me ( 10 c ), C6H5 ( 10 d ), C6H4‐4‐CO2Et ( 10 e ), C6H4‐4‐NO2 ( 10 f ), C6H3‐3,5‐(CF3)2 ( 10 g ), CH3 ( 11 ); E=O ( 12 ), S ( 13 )) are discussed. The solid state structures of four alkynes and two complexes are reported. (Spectro)electrochemical studies show a moderate influence of the nature of the heteroatom and the electron‐donating or ‐withdrawing substituents R in 10 a – g on the electrochemical and spectroscopic properties. The CVs display two consecutive one‐electron redox events with ΔE°′=350–495 mV. A linear relationship between ΔE°′ and the σp Hammett constant for 10 a–f was found. IR, UV/Vis/NIR and EPR studies for 10 +– 13 + confirm full charge delocalization over the {Ru}CH?CH‐heterocycle‐CH?CH{Ru} backbone, classifying them as Class III systems according to the Robin and Day classification. DFT‐optimized structures of the neutral complexes agree well with the experimental ones and provide insight into the structural consequences of stepwise oxidations.  相似文献   

14.
Reaction of (TBBP)AlMe ? THF with [Cp*2Zr(Me)OH] gave [(TBBP)Al(THF)?O?Zr(Me)Cp*2] (TBBP=3,3’,5,5’‐tetra‐tBu‐2,2'‐biphenolato). Reaction of [DIPPnacnacAl(Me)?O?Zr(Me)Cp2] with [PhMe2NH]+[B(C6F5)4]? gave a cationic Al/Zr complex that could be structurally characterized as its THF adduct [(DIPPnacnac)Al(Me)?O?Zr(THF)Cp2]+[B(C6F5)4]? (DIPPnacnac=HC[(Me)C=N(2,6‐iPr2?C6H3)]2). The first complex polymerizes ethene in the presence of an alkylaluminum scavenger but in the absence of methylalumoxane (MAO). The adduct cation is inactive under these conditions. Theoretical calculations show very high energy barriers (ΔG=40–47 kcal mol?1) for ethene insertion with a bridged AlOZr catalyst. This is due to an unfavorable six‐membered‐ring transition state, in which the methyl group bridges the metal and ethene with an obtuse metal‐Me‐C angle that prevents synchronized bond‐breaking and making. A more‐likely pathway is dissociation of the Al‐O‐Zr complex into an aluminate and the active polymerization catalyst [Cp*2ZrMe]+.  相似文献   

15.
The synthesis and characterisation is described of six diaryltetrayne derivatives [Ar‐(C?C)4‐Ar] with Ar=4‐NO2‐C6H4‐ ( NO24 ), 4‐NH(Me)C6H4‐ ( NHMe4 ), 4‐NMe2C6H4‐ ( NMe24 ), 4‐NH2‐(2,6‐dimethyl)C6H4‐ ( DMeNH24 ), 5‐indolyl ( IN4 ) and 5‐benzothienyl ( BTh4 ). X‐ray molecular structures are reported for NO24 , NHMe4 , DMeNH24 , IN4 and BTh4 . The stability of the tetraynes has been assessed under ambient laboratory conditions (20 °C, daylight and in air): NO24 and BTh4 are stable for at least six months without observable decomposition, whereas NHMe4 , NMe24 , DMeNH24 and IN4 decompose within a few hours or days. The derivative DMeNH24 , with ortho‐methyl groups partially shielding the tetrayne backbone, is considerably more stable than the parent compound with Ar=4‐NH2C6H4 ( NH24 ). The ability of the stable tetraynes to anchor in Au|molecule|Au junctions is reported. Scanning‐tunnelling‐microscopy break junction (STM‐BJ) and mechanically controllable break junction (MCBJ) techniques are employed to investigate single‐molecule conductance characteristics.  相似文献   

16.
From the reaction of 1‐HOCPh2‐2‐NMe2C6H4 ( 1 ), 1‐HOC(C6H11)2‐2‐NMe2C6H4 ( 2 ) and 1‐HOCPh2CH2‐2‐NMe2C6H4 ( 3 ) with n‐BuLi in diethyl ether, the solvent‐free chelated dimethylamino lithium alkoxides [1‐LiOCPh2‐2‐NMe2C6H4]2 ( 4 ), [1‐LiOC(C6H11)2‐2‐NMe2C6H4]2 ( 5 ) and [1‐LiOCPh2CH2‐2‐NMe2C6H4]2 ( 6 ) were obtained. The lithium alkoxides 4 – 6 were characterized by 1H, 7Li, and 13C NMR spectroscopy. Crystal structure determinations of 5 and 6 were carried out. Compounds 5 and 6 are examples of structurally characterized solvent‐free chelated dimethylamino lithium alkoxides and 6 is a rare example of this type containing a seven‐membered ring. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
(R)‐[1‐(Dimethylamino)ethyl]benzene reacts with nBuLi in a 1:1 molar ratio in pentane to quantitatively yield a unique hetero‐aggregate ( 2 a ) containing the lithiated arene, unreacted nBuLi, and the complexed parent arene in a 1:1:1 ratio. As a model compound, [Li4(C6H4CH(Me)NMe2‐2)2(nBu)2] ( 2 b ) was prepared from the quantitative redistribution reaction of the parent lithiated arene Li(C6H4CH(Me)NMe2‐2) with nBuLi in a 1:1 molar ratio. The mono‐Et2O adduct [Li4(C6H4CH(Me)NMe2‐2)2(nBu)2(OEt2)] ( 2 c ) and the bis‐Et2O adduct [Li4(C6H4CH(Me)NMe2‐2)2(nBu)2(OEt2)2] ( 2 d ) were obtained by re‐crystallization of 2 b from pentane/Et2O and pure Et2O, respectively. The single‐crystal X‐ray structure determinations of 2 b – d show that the overall structural motifs of all three derivatives are closely related. They are all tetranuclear Li aggregates in which the four Li atoms are arranged in an almost regular tetrahedron. These structures can be described as consisting of two linked dimeric units: one Li2Ar2 dimer and a hypothetical Li2nBu2 dimer. The stereochemical aspects of the chiral Li2Ar2 fragment are discussed. The structures as observed in the solid state are apparently retained in solution as revealed by a combination of cryoscopy and 1H, 13C, and 6Li NMR spectroscopy.  相似文献   

18.
Experimental and theoretical studies on equilibria between iridium hydride alkylidene structures, [(TpMe2)Ir(H){?C(CH2R)ArO }] (TpMe2=hydrotris(3,5‐dimethylpyrazolyl)borate; R=H, Me; Ar=substituted C6H4 group), and their corresponding hydride olefin isomers, [(TpMe2)Ir(H){R(H)C? C(H)OAr}], have been carried out. Compounds of these types are obtained either by reaction of the unsaturated fragment [(TpMe2)Ir(C6H5)2] with o‐C6H4(OH)CH2R, or with the substituted anisoles 2,6‐Me2C6H3OMe, 2,4,6‐Me3C6H2OMe, and 4‐Br‐2,6‐Me2C6H2OMe. The reactions with the substituted anisoles require not only multiple C? H bond activation but also cleavage of the Me? OAr bond and the reversible formation of a C? C bond (as revealed by 13C labeling studies). Equilibria between the two tautomeric structures of these complexes were achieved by prolonged heating at temperatures between 100 and 140 °C, with interconversion of isomeric complexes requiring inversion of the metal configuration, as well as the expected migratory insertion and hydrogen‐elimination reactions. This proposal is supported by a detailed computational exploration of the mechanism at the quantum mechanics (QM) level in the real system. For all compounds investigated, the equilibria favor the alkylidene structure over the olefinic isomer by a factor of between approximately 1 and 25. Calculations demonstrate that the main reason for this preference is the strong Ir–carbene interactions in the carbene isomers, rather than steric destabilization of the olefinic tautomers.  相似文献   

19.
The diarylallenylidene pentacarbonyl complexes (CO)5M=C=C=C(C6H4NMe2-p)2 (M = W (1), Cr (2)) add 1,2,-disubstituted hydrazines RNH-HNR to form alkenyl hydrazino carbene complexes (CO)5M=C(C(H)=C(C6H4NMe2-p)2) NR-N(H)R (M = W, R = Bn (3b), iPr (3c), cHex (3d); M = Cr, R = Me (4a), iPr (4b)) in good yield. 3c and 4b are formed selectively as E-conformers (E arrangement of NβHR and (CO)5M with respect to the C(carbene)-Nα bond). In contrast, all other derivatives of 3 and 4 are obtained as a mixture of E/Z-isomers. On heating, E-3a and E-3b rearrange to give the acrylamidine complexes (CO)5W-NR=C(NHR)C(H)=C(C6H4NMe2-p)2 (R = Me (5a), Bn (5b). The structure of complex 5b was established by X-ray analysis. Acid-catalyzed, the alkenyl hydrazino carbene complexes E-3a, E-3b and 3c are transformed by intramolecular cyclization into the pyrazolidinylidene complexes

(R =Me (6a), Bn (6b), iPr (6c)).

Zusammenfassung

Die Diarylallenyliden(pentacarbonyl)komplexe (CO)5M=C=C=C(C6H4NMe2-p)2 (M = W (1), Cr (2)) addieren 1,2-disbustituierte Hydrazine RNH-HNR in guten Ausbeuten zu Alkenylhydrazinocarbenkomplexen (CO)5M=C(C(H)=C(C6H4NMe2p)2) NR-N(H)R (M = W, R = Bn (3b), iPr (3c), cHex (3d); M = Cr, R =Me(4a), iPr (4b)). 3c und 4b entstehen hierbei selektiv in der E-Konformation (E-Anordnung von NβHR und (CO)5M bezülich der C(Carben)-Nα-Bindung). Alle anderen Derivate von 3 und 4 werden dagegen als E/Z-Isomerengemisch gebildet. E-3a und E-3b lagern sich beim Erwärmen in die Acrylamidinkomplexe (CO)5W-NR=C(NHR)C(H)=C(C6H4NMe2-p)2 (R = Me (5a), Bn (5b)) um. Die Struktur von 5b wurde anhand einer Röntgenstrukturanalyse gesichert. Säurekatalysiert cyclisieren die Alkenylhydrazinocarbenkomplexe E-3a, E-3b und 3c zu den Pyrazolidinylidenkomplexen

(R = Me (6b), iPr (6c)).  相似文献   

20.
Dimerization reactions of diphenyldiazomethane have been applied to the polycondensation of six bisdiazobenzyl arylenes, namely 1,4- and 1,3-bis(α-diazobenzyl)-benzenes C6H5CN2? (C6H4)? CN2C6H5; 1,4- and 1,3-bis(α-diazo-p-methoxybenzyl)-benzenes, p,p′-MeO? C6H4? CN2? (C6H4)? CN2C6H4? OMe; 4,4′-bis(α-diazobenzyl)-diphenylmethane, C6H5CN2? (C6H4CH2C6H4)? CN2C6H5; and 4,4′-bis(α-diazobenyl)-diphenyl ether, C6H5CN2? (C6H4? O? C6H4)CN2C6H5. Depending on the nature of the catalysts, polyene-arylenes (? C(Ar)?C(Ar)? C6H4)n, and polyazine-arylenes, (? C(Ar)?N? N? C(Ar)? C6H4? )n, can be obtained selectively by acid-catalyzed decomposition of these bisdiazoalkanes at room temperature. With perchloric acid and with arylsulfonic acids in strong polar media, polyene-arylenes are formed. On the other hand, boron trifluoride and arylsulfonic acids in solvents of low dielectric constant afford polyazine-arylenes. Less selective is the thermal decomposition at 75°C in toluene solution; it gives a polymer containing about 90% azine and 10% olefinic groups. All these polymers are soluble in common solvents. Their molecular weight vary from 3 200 to 5 000, i.e., X?n from 12 to 20. The polyene-arylenes are very stable and decompose only around 500°C; the polyazine-arylenes are less stable and decompose around 370°C by losing nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号