首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The hydrogen abstraction reaction of Cl atoms with CF3CH2Cl (HCFC‐133a) is investigated by using density function theory and ab initio approach, and the rate constants are calculated by using the dual‐level direct dynamics method. Optimized geometries and frequencies of reactants, transition state, and products are computed at the B3LYP/6‐311+G(2d,2p) level. To refine the energetic information along the minimum energy path, single‐point energy calculations are carried out at the G3(MP2) level of theory. The interpolated single‐point energy method is employed to correct the energy profiles for the title reaction. The rate constants are evaluated by using the canonical variational transition state theory with a small‐curvature tunneling correction over a wide range of temperature, 200–2000 K. The variational effect for the reaction is moderate at low temperatures and very small at high temperatures. However, the tunneling correction has an important contribution in the lower temperature range. The agreement between calculated rate constants and available experimental values is good at lower temperatures but diverges significantly at higher temperatures. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 661–667, 2012  相似文献   

2.
The reaction of C2(A3Πu) with CH4 has been investigated over a wide temperature range 200–3,000 K by direct ab initio dynamics method at the BMC‐CCSD//BB1K/6‐311+G(2d,2p) level of theory. The optimized geometries and frequencies of the stationary points are calculated at the BB1K/6‐311+G(2d,2p) level, and then the energy profiles of the reactions are refined using the BMC‐CCSD method. The activation barrier height for H‐abstraction reaction was calculated to be 4.44 kcal/mol in temperature range (337–605 K), and the electron transfer behavior was also analyzed by quasi‐restricted molecular orbital method in detail. The canonical variational transition‐state theory (CVT) with the small curvature tunneling (SCT) correction method is used to calculate the rate constants over a wide temperature range 200–3,000 K. The theoretical results shows that variational effect is to some extent large in lower temperature range, and small curvature and tunneling effect play important roles to the H‐atom abstraction only at lower temperatures. The CVT/SCT rate constants are in good agreement with the available experimental results. Our theoretical study is expected to provide a direct insight into the reaction mechanism and may be useful for estimating the kinetics of the title reaction over a wide temperature range where no experimental data are available so far. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

3.
At room temperature, 1,2‐hydrogen‐transfer reactions of N‐heterocyclic carbenes, like the imidazol‐2‐ylidene to give imidazole is shown to occurr almost entirely (>90 %) by quantum mechanical tunneling (QMT). At 60 K in an Ar matrix, for the 2, 3‐dihydrothiazol‐2‐ylidene→thiazole transformation, QMT is shown to increase the rate about 105 times. Calculations including small‐curvature tunneling show that the barrier for intermolecular 1,2‐hydrogen‐transfer reaction is small, and QMT leads to a reduced rate of the forward reaction because of nonclassical reflections even at room temperature. A small barrier also leads to smaller kinetic isotope effects because of efficient QMT by both H and D. QMT does not always lead to faster reactions or larger KIE values, particularly when the barrier is small.  相似文献   

4.
采用双水平直接动力学方法对C2H3与CH3F氢抽提反应进行了研究. 在QCISD(T)/6-311++G(d, p)//B3LYP/6-311G(d, p)水平上, 计算的三个反应通道R1、R2和R3的能垒(ΔE)分别为43.2、43.9和44.1 kJ·mol-1, 反应热为-38.2 kJ·mol-1. 此外, 利用传统过渡态理论(TST)、正则变分过渡态理论(CVT)和包含小曲率隧道效应(SCT)的CVT, 分别计算了200-3000 K温度范围内反应的速率常数kTST、kCVT和kCVT/SCT. 结果表明: (1) 三个氢抽提反应通道的速率常数随温度的增加而增大, 其中变分效应的影响可以忽略, 隧道效应则在低温段影响显著; (2) R1反应是主反应通道, 但随着温度的升高, R2反应的竞争力增大, 而R3反应对总速率常数的影响很小.  相似文献   

5.
Experimental measurements of the kinetics of the title reactions extend to temperature ranges of 1360 K for the ammonia‐hydrogen reaction and of 1602 K for the methane‐hydrogen reaction. Curved plots of ln(k) versus 1/T are obtained. Many theoretical calculations modeling these reactions routinely use tunneling corrections to match experiment. The steepness and curvatures of the plots are modeled successfully in this work and are shown to be caused solely by changes in the bond dissociation energies of the bonds involved in the reactions without invoking tunneling or any other adjustable parameters. The conclusion that tunneling does not contribute significantly to the rates in the temperature range of the measurements is in stark contrast with those theoretical calculations invoking large tunneling factors in the experimental temperature range. Support for the conclusion is provided by theoretical calculations of harmonic quantum transition state theory implementing instanton theory. There is direct experimental evidence that significant tunneling occurs in some H atom transfers, as with isotopomers of H2 + ·H and other H transfers at very low temperatures. However, there is no direct experimental evidence of significant tunneling contributions to the rates of the title reactions in the temperature range of the measurements. Insights are gained into what specific forces must be overcome by the enthalpy of activation for reaction to occur.  相似文献   

6.
As an experimental test of the theoretical prediction that heavy‐atom tunneling is involved in the degenerate Cope rearrangement of semibullvalenes at cryogenic temperatures, monodeuterated 1,5‐dimethylsemibullvalene isotopomers were prepared and investigated by IR spectroscopy using the matrix isolation technique. As predicted, the less thermodynamically stable isotopomer rearranges at cryogenic temperatures in the dark to the more stable one, while broadband IR irradiation above 2000 cm−1 results in an equilibration of the isotopomeric ratio. Since this reaction proceeds with a rate constant in the order of 10−4 s−1 despite an experimental barrier of Ea=4.8 kcal mol−1 and with only a shallow temperature dependence, the results are interpreted in terms of heavy‐atom tunneling.  相似文献   

7.
The minimum energy path (MEP) of the reaction, CF3CHFCF3 + H → transition state (TS) → CF3CFCF3 + H2, has been computed at different ab initio levels and with density functional theory (DFT) using different functionals. The computed B3LYP/6‐31++G**, BH&HLYP/cc‐pVDZ, BMK/6‐31++G**, M05/6‐31+G**, M05‐2X/6‐31+G**, UMP2/6‐31++G**, PUMP2/6‐31++G**//UMP2/6‐31++G**, RCCSD(T)/aug‐cc‐pVDZ//UMP2/6‐31++G**, RCCSD(T)/aug‐cc‐pVTZ(spd,sp)//UMP2//6‐31++G**, RCCSD(T)/CBS//M05/6‐31+G**, and RCCSD(T)/CBS//UMP2/6‐31++G** MEPs, and associated gradients and Hessians, were used in reaction rate coefficient calculations based on the transition state theory (TST). Reaction rate coefficients were computed between 300 and 1500 K at various levels of TST, which include conventional TST, canonical variational TST (CVT) and improved CVT (ICVT), and with different tunneling corrections, namely, Wigner, zero‐curvature, and small‐curvature (SCT). The computed rate coefficients obtained at different ab initio, DFT and TST levels are compared with experimental values available in the 1000–1200 K temperature range. Based on the rate coefficients computed at the ICVT/SCT level, the highest TST level used in this study, the BH&HLYP functional performs best among all the functionals used, while the RCCSD(T)/CBS//MP2/6‐31++G** level is the best among all the ab initio levels used. Comparing computed reaction rate coefficients obtained at different levels of theory shows that, the computed barrier height has the strongest effect on the computed reaction rate coefficients as expected. Variational effects on the computed rate coefficients are found to be negligibly small. Although tunneling effects are relatively small at high temperatures (~1500 K), SCT corrections are significant at low temperatures (~300 K), and both barrier heights and the magnitudes of the imaginary frequencies affect SCT corrections. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
The temperature and pressure dependence of the reaction of OH + CO has been modeled using the (energy‐resolved) master equation and RRKM theory. These calculations are based on the coupled‐cluster potential energy surface of Yu and co‐workers (Chem Phys Lett 349, 547–554, 2001). As is well known, this reaction shows a strong non‐Arrhenius behavior at moderate and low temperatures because of the stabilization of the HOCO intermediate. Kinetic simulations are in excellent agreement with experiments at temperatures above 300 K, but the agreement is only modest at temperatures below 250 K. Our calculations indicate that the contribution of tunneling to the rate constant is marginal, given the small energy difference between the transition states corresponding to formation and decomposition of the HOCO intermediate. Parametric fits to the calculated rate constants are provided for modeling purposes. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 464–474, 2003  相似文献   

9.
The hydrogen abstraction reactions of OH radicals with CH3CH2CH2Cl (R1) and CH3CHClCH3 (R2) have been investigated theoretically by a dual‐level direct dynamics method. The optimized geometries and frequencies of the stationary points are calculated at the B3LYP/6‐311G(d,p) level. To improve the reaction enthalpy and potential barrier of each reaction channel, the single point energy calculation is performed by the BMC‐CCSD method. Using canonical variational transition‐state theory (CVT) with the small‐curvature tunneling correction, the rate constants are evaluated over a wide temperature range of 200–2000 K at the BMC‐CCSD//B3LYP/6‐311G(d,p) level. For the reaction channels with the negative barrier heights, the rate constants are calculated by using the CVT. The calculated total rate constants are consistent with available experimental data. The results show that at lower temperatures, the tunneling correction has an important contribution in the calculation of rate constants for all the reaction channels with the positive barrier heights, while the variational effect is found negligible for some reaction channels. For reactions OH radicals with CH3CH2CH2Cl (R1) and CH3CHClCH3 (R2), the channels of H‐abstraction from –CH2– and –CHCl groups are the major reaction channels, respectively, at lower temperatures. With temperature increasing, contributions from other channels should be taken into account. Finally, the total rate constants are fitted by two models, i.e., three‐parameter and four‐parameter expressions. The enthalpies of formation of the species CH3CHClCH2, CH3CHCH2Cl, and CH2CH2CH2Cl are evaluated by isodesmic reactions. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

10.
Quantum tunneling paths are important in reactions when there is a significant component of hydrogenic motion along the potential energy surface. In this study, variational transition state with multidimensional tunneling corrections are employed in the calculations of the thermal rate constants for hydrogen abstraction from the cis‐CH3OCHO by O (3P) giving CH3OCO + OH (R1) and CH2OCHO + OH (R2). The structures and electronic energies are computed with the M06‐2X method. Benchmark calculations with the CBSD–T approach give an enthalpy of reaction at 0 K for R1 (−2.8 kcal/mol) and R2 (−2.5 kcal/mol) which are in good agreement with the experiment, i.e. −2.61 and −1.81 kcal/mol. At the low and intermediate values of temperatures, small‐ and large‐curvature tunneling dominate the kinetics of R1, which is the dominant path over the range of temperature from 250 to 1200 K. This study shows the importance of multidimensional tunneling corrections for both R1 and R2, for which the total rate constant at 298 K calculated with the CVT/μOMT method is 8.2 × 10−15 cm3 molecule−1 s−1 which agrees well with experiment value of 9.3 × 10−15 cm3 molecule−1 s−1 (Mori, Bull. Inst. Chem. Res. 1981, 59, 116). © 2018 Wiley Periodicals, Inc.  相似文献   

11.
We calculate, down to low temperature and for different isotopes, the reaction rate constants for the hydrogen abstraction reaction H + H(3)COH → H(2) + CH(2)OH/CH(3)O. These explain the known abundances of deuterated forms of methanol in interstellar clouds, where CH(2)DOH can be almost as abundant as CH(3)OH. For abstraction from both the C- and the O-end of methanol, the barrier-crossing motion involves the movement of light hydrogen atoms. Consequently, tunneling plays a dominant role already at relatively high temperature. Our implementation of harmonic quantum transition state theory with on the fly calculation of forces and energies accounts for these tunneling effects. The results are in good agreement with previous semiclassical and quantum dynamics calculations (down to 200 K) and experimental studies (down to 295 K). Here we extend the rate calculations down to lower temperature: 30 K for abstraction from the C-end of methanol and 80 K for abstraction from the OH-group. At all temperatures, abstraction from the C-end is preferred over abstraction from the O-end, more strongly so at lower temperature. Furthermore, the tunneling behavior strongly affects the kinetic isotope effects (KIEs). D + H(3)COH → HD + CH(2)OH has a lower vibrationally adiabatic barrier than H + H(3)COH → H(2) + CH(2)OH, giving rise to an inverse KIE (k(H)/k(D) < 1) at high temperature, in accordance with previous experiments and calculations. However, since tunneling is more facile for the light H atom, abstraction by H is favored over abstraction by D below ~135 K, with a KIE k(H)/k(D) of 11.2 at 30 K. The H + D(3)COD → HD + CD(2)OD reaction is calculated to be much slower than the D + H(3)COH → HD + CH(2)OH, in agreement with low-temperature solid-state experiments, which suggests the preference for H (as opposed to D) abstraction from the C-end of methanol to be the mechanism by which interstellar methanol is deuterium-enriched.  相似文献   

12.
The hydrogen-abstraction reaction C2H5F+O → C2H4F+OH has been studied by a dual-level direct dynamics method. For the reaction, three reaction channels, one for α-abstraction and two for β-abstraction, have been identified. The potential-energy surface information is obtained at the MP2(full)/6-311G(d,p) and PMP2(full)/6-311G(3df,3pd) (single-point) levels. By canonical variational transition-state theory, rate constants for each reaction channel are calculated with a small-curvature tunneling correction. The total rate constant is calculated from the sum of the individual rate constants and the temperature dependence of the branching ratios is obtained over a wide range of temperatures from 300 to 5,000 K. The agreement of the rate constants with experiment is good in the experimental temperature range from 1,000 to 1,250 K. The calculated results indicate that at low temperatures α-abstraction is most likely to be the major reaction channel, while β-abstraction channels will significantly contribute to the whole reaction rate as the temperature increases. Received: 23 January 2002 / Accepted: 23 June 2002 / Published online: 20 September 2002  相似文献   

13.
A theoretical study of the mechanism and the kinetics for the hydrogen abstraction reaction of the biradical hydroperoxy radical has been presented at the CCSD(T)/6‐311++G(3d,2p)//CCSD/6‐31+G(d,p) level of theory. Our theoretical calculations suppose a stepwise mechanism involving the formation of a postreactant complex in the triplet and singlet entrance channels. Four transition states of the six‐membered chain complexes (3TS1 and 1TS1) and six‐membered ring complexes (3TS2 and 1TS2) are located at the high dual level CCSD(T)/6‐311++G(3d,2p)//CCSD/6‐31+G(d,p) method. The rate constants of Path 1 ~ Path 4 at the CCSD(T)/6‐311++G(3d,2p)//CCSD/6‐31+G (d,p) level are calculated by means of the conventional transition state theory (TST) and canonical variational TST without and with small‐curvature tunneling (SCT) correction within the temperature range of 200–2,500 K. The calculated results show that the triplet channel is the dominating reaction channel and Path 2 is found to be the most favorable pathway. The rate constants of Path 2 are in good agreement with the experimental values at the experimentally measured temperatures. Moreover, the variational effect is not obvious in the low temperature range but is not neglectable in the high temperature range. The SCT plays an important role particularly in the low temperature range. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

14.
Theoretical investigations are carried out on the multichannel reaction CHBr(2)Cl + Cl by means of direct dynamics methods. The minimum energy path (MEP) is obtained at the BH&H-LYP/6-311G(d,p) level, and energetic information is further refined at the CCSD(T)/6-311+G(2df,2p) (single-point) level. The rate constants for three reaction channels, H-abstraction, Br-abstraction, and Cl-abstraction, are calculated by using the improved canonical variational transition state theory (ICVT) incorporating with the small-curvature tunneling (SCT) correction. The theoretical overall rate constants are in good agreement with the available experimental data and are found to be k=2.58 x 10(-15) T(1.18) exp(-861.17/T) cm(3)molecule(-1)s(-1) over the temperature range 200--2400 K. For the title reaction, H-abstraction reaction channel is the major channel at the lower temperatures, while as the temperature increases, the contribution of Br-abstraction reaction channel should be taken into account. At 2180 K, the rate constants of these two pathways are equal. Cl-abstraction reaction channel is minor channel over the whole temperature region.  相似文献   

15.
This paper reports the temperature dependence of the relaxation time T1 (55.2 and 90 MHz) and the second moment of the NMR line for protons in a polycrystalline sample of [NH2(CH3)2]3Sb2Cl9 (DMACA). The fundamental aspects of molecular dynamics from quantum tunneling at low temperatures to thermally activated reorientation at elevated temperatures have been studied. The experimentally observed spin-lattice relaxation rate is a consequence of dipolar interactions between the spin pairs inside the methyl group (1/T(1AE) contribution) as well as the spins belonging to neighboring methyl groups and pairs, methyl spin-outer methyl spin (1/T(1EE) contribution). These contributions are considered separately. Two methyl groups in the dimethylammonium (DMA) cations are dynamically inequivalent. The values of the tunnel splitting of separate methyl groups are obtained from the T1 (55.2 MHz) experiment. The tunneling dynamics taking place below the characteristic temperatures 74 and 42 K for separate methyl groups are discussed in terms of the Schr?dinger equation. These temperatures point to the one at which thermal energy C(p)T and potential barrier take the same value. It is established that the second moment of the proton NMR line below 74 K up to liquid helium temperature is much lower than the rigid lattice value, which is due to a tunneling stochastic process of the methyl groups.  相似文献   

16.
A recently developed quantum transition state theory (QTST) [E. Pollak and J. L. Liao, J. Chem. Phys. 108, 2733 (1998)] for calculating thermal rate constants of chemical reactions is applied to the full three-dimensional hydrogen exchange reaction. Results are compared with other numerical results, for temperatures ranging from T=300 K to T=1500 K. The QTST rate is almost exact at high temperature and is 20% greater than the exact rate at T=300 K, where there is extensive tunneling.  相似文献   

17.
MPW1K density functional calculations, carried out with the 6-31+G(d,p) basis set, have been combined with canonical variational transition state theory (CVT) and small-curvature tunneling (SCT) corrections in order to compute the primary kinetic isotope effects for rearrangement of 5-methyl-1,3-cyclopentadiene (1) to 1-methyl-1,3-cyclopentadiene (2). The Swain-Schaad exponents, SSE = ln(kH/kT)/ln(kD/kT), for this reaction have been computed over the temperature range 100-600 K. Tunneling results in both large positive and large negative deviations from the value of SSE = 3.26, expected from consideration of only the effect of the isotopic mass on passage over the reaction barrier. In the rearrangement of 1 to 2, SSE approximately 3.26, not only at temperatures >400 K, where tunneling is relatively unimportant, but also around 170 K, where tunneling by both H and D is the dominant mode of reaction. Thus, from an experimental finding that SSE approximately 3.26 at a single temperature, it cannot be rigorously concluded that tunneling is unimportant. Measurement of SSEs over a broad temperature range is advisable; but measurement of the temperature dependence of just kH/kD can be used to establish more unequivocally whether tunneling is important, without the necessity of measuring kT.  相似文献   

18.
A direct ab initio dynamics method is used to investigate the hydrogen‐abstraction reaction CH3CHF2+Cl. One transition state is located for α‐H abstraction, and two are identified for β‐H abstraction. The potential‐energy surface (PES) is obtained at the G3(MP2)//MP2/6‐311G(d, p) level. Furthermore, the rate constants of the three channels are evaluated by using canonical variational transition‐state theory (CVT) with small‐curvature tunneling (SCT) contributions over a wide temperature range of 200–2500 K. The dynamic calculations show that the reaction proceeds mainly by α‐H abstraction over the whole temperature range. The calculated rate constants and branching ratios are both in good agreement with the available experimental values.  相似文献   

19.
The reaction of N2H4 with OH has been investigated by quantum chemical methods. The results show that hydrogen abstraction mechanism is more feasible than substitution mechanism thermodynamically. The calculated rate constants agree with the available experimental data. The calculated results show that the variational effect is small at lower temperature region, while it becomes significant at higher temperature region. On the other hand, the small‐curvature tunneling effect may play an important role in the temperature range 220?3000 K. Moreover, the calculated rate constants show negative temperature dependence at the temperatures below 500 K, which is in accordance with Vaghjiani's report that slightly negative temperature dependence is found over the temperature range of 258?637 K. The mechanism of the major product (N2H3) with OH has also been investigated theoretically to understand the title reaction thoroughly. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

20.
The CHClF(2) + Cl --> ClH + CClF(2) gas-phase abstraction reaction was chosen as a model of asymmetrically substituted polyatomic reactions of type CWXYZ + A --> products. The analytical potential energy surface for this reaction was constructed with suitable functional forms to represent vibrational modes, and calibrated with respect to experimental thermal rate constants which are available over the temperature range 296-410 K. On this surface, the thermal rate constants were calculated using variational transition-state theory with semiclassical transmission coefficients over a wider temperature range, 200-2500 K, therefore obtaining kinetics information at lower and higher temperatures than are experimentally available. This surface was also used to analyze dynamical features, such as tunneling and reaction-path curvature. In the former, the influence of the tunneling factor was important since a light hydrogen atom passes through the barrier. In the latter, it was found that vibrational excitation of the C-F and C-Cl stretching modes can be expected in the exit channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号