首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 248 毫秒
1.
Fluorescent dyes emitting red light are frequently used in conventional and super‐resolution microscopy of biological samples, although the variety of the useful dyes is limited. We describe the synthesis of rhodamine‐based fluorescent dyes with absorption and emission maxima in the range of 621–637 and 644–660 nm, respectively and demonstrate their high performance in confocal and stimulated emission depletion (STED) microscopy. New dyes were prepared by means of reliable chemical transformations applied to a rhodamine scaffold with three variable positions. They feature polarity, water solubility, variable net charges, improved stabilities of N‐hydroxysuccinimidyl (NHS) esters, as well as large fluorescence quantum yields in dye solutions and antibody conjugates. The photophysical and imaging properties of dyes containing three different polar groups, namely primary phosphate, sulfonic acid (in two different positions), and hydroxyl were compared. A dye with two primary phosphate groups was explored as a valuable alternative to dyes with “classical” sulfonic acid groups. Due to the increased net charge of the phosphorylated dye (q=?4 at pH 8), it demonstrated a far better electrophoretic mobility compared with analogues with two sulfonic acid groups (q=?2). As an example, one fluorescent dye was designed to be especially convenient for practical use. It is characterized by sufficiently high chemical stability of the NHS ester, its simple isolation, handling, and solubility in aqueous buffers, as well as in organic solvents. All these features, accompanied by a zero net charge in conjugates, were accomplished by the introduction of hydrophilic groups of two types: two hydroxyl groups and one sulfonic acid residue.  相似文献   

2.
Caged rhodamine dyes (Rhodamines NN) of five basic colors were synthesized and used as “hidden” markers in subdiffractional and conventional light microscopy. These masked fluorophores with a 2‐diazo‐1‐indanone group can be irreversibly photoactivated, either by irradiation with UV‐ or violet light (one‐photon process), or by exposure to intense red light (λ~750 nm; two‐photon mode). All dyes possess a very small 2‐diazoketone caging group incorporated into the 2‐diazo‐1‐indanone residue with a quaternary carbon atom (C‐3) and a spiro‐9H‐xanthene fragment. Initially they are non‐colored (pale yellow), non‐fluorescent, and absorb at λ=330–350 nm (molar extinction coefficient (ε)≈104 M?1 cm?1) with a band edge that extends to about λ=440 nm. The absorption and emission bands of the uncaged derivatives are tunable over a wide range (λ=511–633 and 525–653 nm, respectively). The unmasked dyes are highly colored and fluorescent (ε= 3–8×104 M?1 cm?1 and fluorescence quantum yields (?)=40–85 % in the unbound state and in methanol). By stepwise and orthogonal protection of carboxylic and sulfonic acid groups a highly water‐soluble caged red‐emitting dye with two sulfonic acid residues was prepared. Rhodamines NN were decorated with amino‐reactive N‐hydroxysuccinimidyl ester groups, applied in aqueous buffers, easily conjugated with proteins, and readily photoactivated (uncaged) with λ=375–420 nm light or intense red light (λ=775 nm). Protein conjugates with optimal degrees of labeling (3–6) were prepared and uncaged with λ=405 nm light in aqueous buffer solutions (?=20–38 %). The photochemical cleavage of the masking group generates only molecular nitrogen. Some 10–40 % of the non‐fluorescent (dark) byproducts are also formed. However, they have low absorbance and do not quench the fluorescence of the uncaged dyes. Photoactivation of the individual molecules of Rhodamines NN (e.g., due to reversible or irreversible transition to a “dark” non‐emitting state or photobleaching) provides multicolor images with subdiffractional optical resolution. The applicability of these novel caged fluorophores in super‐resolution optical microscopy is exemplified.  相似文献   

3.
Photoactivatable fluorophores are essential tools for studying the dynamic molecular interactions within important biological systems with high spatiotemporal resolution. However, currently developed photoactivatable fluorophores based on conventional dyes have several limitations including reduced photoactivation efficiency, cytotoxicity, large molecular size, and complicated organic synthesis. To overcome these challenges, we herein report a class of photoactivatable fluorescent N‐hydroxyoxindoles formed through the intramolecular photocyclization of substituted o‐nitrophenyl ethanol (ONPE). These oxindole fluorophores afford excellent photoactivation efficiency with ultra‐high fluorescence enhancement (up to 800‐fold) and are small in size. Furthermore, the oxindole derivatives show exceptional biocompatibility by generating water as the only photolytic side product. Moreover, structure–activity relationship analysis clearly revealed the strong correlation between the fluorescent properties and the substituent groups, which can serve as a guideline for the further development of ONPE‐based fluorescent probes with desired photophysical and biological properties. As a proof‐of‐concept, we demonstrated the capability of a new substituted ONPE that has an uncaging wavelength of 365–405 nm and an excitation/emission at 515 and 620 nm, for the selective imaging of a cancer cell line (Hela cells) and a human neural stem cell line (hNSCs).  相似文献   

4.
A range of bright and photostable rhodamines and carbopyronines with absorption maxima in the range of λ=500–630 nm were prepared, and enabled the specific labeling of cytoskeletal filaments using HaloTag technology followed by staining with 1 μm solutions of the dye–ligand conjugates. The synthesis, photophysical parameters, fluorogenic behavior, and structure–property relationships of the new dyes are discussed. Light microscopy with stimulated emission depletion (STED) provided one‐ and two‐color images of living cells with an optical resolution of 40–60 nm.  相似文献   

5.
Far‐red emitting fluorescent dyes for optical microscopy, stimulated emission depletion (STED), and ground‐state depletion (GSDIM) super‐resolution microscopy are presented. Fluorinated silicon–rhodamines (SiRF dyes) and phosphorylated oxazines have absorption and emission maxima at about λ≈660 and 680 nm, respectively, possess high photostability, and large fluorescence quantum yields in water. A high‐yielding synthetic path to introduce three aromatic fluorine atoms and unconventional conjugation/solubilization spacers into the scaffold of a silicon–rhodamine is described. The bathochromic shift in SiRF dyes is achieved without additional fused rings or double bonds. As a result, the molecular size and molecular mass stay quite small (<600 Da). The use of the λ=800 nm STED beam instead of the commonly used one at λ=750–775 nm provides excellent imaging performance and suppresses re‐excitation of SiRF and the oxazine dyes. The photophysical properties and immunofluorescence imaging performance of these new far‐red emitting dyes (photobleaching, optical resolution, and switch‐off behavior) are discussed in detail and compared with those of some well‐established fluorophores with similar spectral properties.  相似文献   

6.
This article describes a series of nine complexes of boron difluoride with 2′‐hydroxychacone derivatives. These dyes were synthesized very simply and exhibited intense NIR emission in the solid state. Complexation with boron was shown to impart very strong donor–acceptor character into the excited state of these dyes, which further shifted their emission towards the NIR region (up to 855 nm for dye 5 b , which contained the strongly donating triphenylamine group). Strikingly, these optical features were obtained for crystalline solids, which are characterized by high molecular order and tight packing, two features that are conventionally believed to be detrimental to luminescence in organic crystals. Remarkably, the emission of light from the π‐stacked molecules did not occur at the expense of the emission quantum yield. Indeed, in the case of pyrene‐containing dye 4 , for example, a fluorescence quantum yield of about 15 % with a fluorescence emission maximum at 755 nm were obtained in the solid state. Moreover, dye 3 a and acetonaphthone‐based compounds 1 b , 2 b , and 3 b showed no evidence of degradation as solutions in CH2Cl2 that contained EtOH. In particular, solutions of brightly fluorescent compound 3 a (brightness: ε×Φf=45 000 M ?1 cm?1) could be stored for long periods without any detectable changes in its optical properties. All together, these new dyes possess a set of very interesting properties that make them promising solid‐state NIR fluorophores for applications in materials science.  相似文献   

7.
Five fluorescence polymers with poly(perylene‐alt‐phenyleneethynylene)s (PPPEs) backbone and multiple side chains containing ester‐groups were synthesized via Sonogashira coupling reaction. These polymers were soluble in common organic solvents to form red‐orange solution. The polymer powders had dark red color. The absorption/emission spectra of these polymers were similar, with absorption bands between 300 and 600 nm and an emission peak between 520 and 700 nm. Furthermore, the ester groups of the side chains were partially or completely hydrolyzed, resulting in the fluorescence PPPEs with tunable density of carboxylic acid functional groups on the polymer chains as interaction/reaction sites for further applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1880–1886  相似文献   

8.
The synthesis, one‐ and two‐photon absorption (TPA) and emission properties of two novel 2,6‐anthracenevinylene‐based copolymers, poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinylene‐alt‐N‐octyl‐3,6‐carbazolevinyl‐ene] ( P1 ) and poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinyl‐ene‐alt‐N‐octyl‐2,7‐carbazolevinylene] ( P2 ) were reported. The as‐synthesized polymers have the number‐average molecular weights of 1.56 × 104 for P1 and 1.85 × 104 g mol?1 for P2 and are readily soluble in common organic solvents. They emit strong bluish‐green one‐ and two‐photon excitation fluorescence in dilute toluene solution (? P1 = 0.85, ? P2 = 0.78, λem( P1 ) = 491 nm, λem( P2 ) = 483 nm). The maximal TPA cross‐sections of P1 and P2 measured by the two‐photon‐induced fluorescence method using femtosecond laser pulses in toluene are 840 and 490 GM per repeating unit, respectively, which are obviously larger than that (210 GM) of poly[9,10‐bis‐(3,4‐bis(2‐ethylhexyloxy) phenyl)‐2,6‐anthracenevinylene], indicating that the poly(2,6‐anthracenevinylene) derivatives with large TPA cross‐sections can be obtained by inserting electron‐donating moieties into the polymer backbone. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 463–470, 2010  相似文献   

9.
Optimized facile syntheses and highly desirable spectroscopic properties of two isomorphic fluorescent pyrimidines, comprising a 1,2,4‐triazine motif conjugated to a thiophene ( 1 a ) or a furan ( 1 b ), are described. Although structurally related to their 5‐modified uridine counterparts, these modified 6‐aza‐uridines reveal dramatically improved fluorescence properties and a remarkable sensitivity to polarity and pH changes. The thiophene derivative 1 a has an absorption maximum around 335 nm, which upon excitation yields visible emission with a polarity‐sensitive maximum and fluorescence quantum yield ranging from 415 nm (Φ=0.8) to 455 nm (Φ=0.2) in dioxane and water, respectively. Nucleoside 1 a also displays susceptibility to acidity. Correlating emission intensity and solution pH yields a pKa value of 6.7–6.9, reasonably close to physiological pH values. The results illustrate that highly sought‐after fluorescence features (brightness and responsiveness) are not necessarily the trait of large fluorophores alone, but can be observed with probes that meet stringent isomorphic design criteria.  相似文献   

10.
Benzene is the simplest aromatic hydrocarbon with a six‐membered ring. It is one of the most basic structural units for the construction of π conjugated systems, which are widely used as fluorescent dyes and other luminescent materials for imaging applications and displays because of their enhanced spectroscopic signal. Presented herein is 2,5‐bis(methylsulfonyl)‐1,4‐diaminobenzene as a novel architecture for green fluorophores, established based on an effective push–pull system supported by intramolecular hydrogen bonding. This compound demonstrates high fluorescence emission and photostability and is solid‐state emissive, water‐soluble, and solvent‐ and pH‐independent with quantum yields of Φ=0.67 and Stokes shift of 140 nm (in water). This architecture is a significant departure from conventional extended π‐conjugated systems based on a flat and rigid molecular design and provides a minimum requirement for green fluorophores comprising a single benzene ring.  相似文献   

11.
A two‐stage mediated near‐infrared (NIR) emissive supramolecular assembly for lysosome‐targeted cell imaging is presented. 4,4′‐Anthracene‐9,10‐diylbis(ethene‐2,1‐diyl))bis(1‐ethylpyridin‐1‐ium) bromide (ENDT) was synthesized as an organic dye with weak fluorescence emission at 625 nm. When ENDT complexes with cucurbit[8]uril (CB[8]), this binary supramolecular complex assembles into nanorods with a near‐infrared fluorescence emission (655 nm) and fluorescence enhancement as the first stage. Such supramolecular complexes interact with lower‐rim dodecyl‐modified sulfonatocalix[4]arene (SC4AD) to form nanoparticles for further fluorescence enhancement as the second stage. Furthermore, based on a co‐staining experiment with LysoTracker Blue, such nanoparticles can be applied in NIR lysosome‐targeted cell imaging.  相似文献   

12.
Six donor–acceptor‐type near‐infrared (NIR) aza–boron‐dipyrromethene (BODIPY) dyes and their corresponding aza–dipyrrins were designed and synthesized. The donor moieties at the 1,7‐positions of the aza–BODIPY core were varied from naphthyl to N‐phenylcarbazole to N‐butylcarbazole. The 3,5‐positions were also substituted with phenyl or thienyl groups in the aza–BODIPYs. Photophysical, electrochemical, and computational studies were carried out. The absorption and emission spectra of aza–BODIPYs were significantly redshifted (≈100 nm) relative to the parent tetraphenylaza–BODIPY. Fluorescence studies suggested effective energy transfer (up to 93 %) from donor groups to the aza–BODIPY core in all of the compounds under study. Time‐dependent (TD)‐DFT studies indicated effective electronic interactions between energy donor groups and aza–dipyrrin unit in all the aza–BODIPYs studied. The HOMO–LUMO gap (ΔE) calculated from cyclic voltammetry data was found to be lower for six aza–BODIPYs relative to their corresponding aza–dipyrrins.  相似文献   

13.
Benzene is the simplest aromatic hydrocarbon with a six‐membered ring. It is one of the most basic structural units for the construction of π conjugated systems, which are widely used as fluorescent dyes and other luminescent materials for imaging applications and displays because of their enhanced spectroscopic signal. Presented herein is 2,5‐bis(methylsulfonyl)‐1,4‐diaminobenzene as a novel architecture for green fluorophores, established based on an effective push–pull system supported by intramolecular hydrogen bonding. This compound demonstrates high fluorescence emission and photostability and is solid‐state emissive, water‐soluble, and solvent‐ and pH‐independent with quantum yields of Φ=0.67 and Stokes shift of 140 nm (in water). This architecture is a significant departure from conventional extended π‐conjugated systems based on a flat and rigid molecular design and provides a minimum requirement for green fluorophores comprising a single benzene ring.  相似文献   

14.
Herein we report on the synthesis and acid‐responsive emission properties of donor–acceptor (D–A) molecules that contain a thienothiophene unit. 2‐Arylthieno[3,2‐b]thiophenes were conjugated with an N‐methylbenzimidazole unit to form acid‐responsive D–A‐type fluorophores. The D–A‐conjugated fluorophores showed intense intramolecular charge‐transfer (ICT) emission in response to acid. The effect of the substitution on their photophysical properties as well as their solvent‐dependence indicated non‐twisting ICT emission in protonated D–A molecules. The quinoidal character of 2‐arylthienothiophene as a donor part is discussed, as it is assumed that it contributes to suppression of the molecular twisting in the excited state, therefore decreasing the nonradiative rate constant, thereby resulting in the intense ICT emission. Acid–base‐sensitive triple‐color emission was also achieved by the introduction of a base‐responsive phenol group in the donor part.  相似文献   

15.
A new series of rigid polyesters and semiflexible polyethers were synthesized from 4,4″‐dihydroxy‐5′‐phenyl or anthracenyl‐m‐terphenyl. The polymers were characterized by viscometry, Fourier transform infrared, NMR, X‐ray, differential scanning calorimetry, thermomechanical analysis, thermogravimetric analysis, ultraviolet–visible, and luminescence spectroscopy. The polyesters were amorphous, whereas some of the polyethers showed a low degree of crystallinity. All the polymers displayed an enhanced solubility even in 1,1,2,2‐tetrachloroethane and tetrahydrofuran. The glass‐transition temperatures were 123–146 °C for the polyesters and 45–117 °C for the polyethers. The polymers were stable up to 213–340 °C and afforded anaerobic char yields of 36–62% at 800 °C. Their optical properties were investigated both in solution and in the solid state. They showed ultraviolet fluorescence, violet‐blue fluorescence, or both with emission maxima at 333–487 nm. The polymers with anthracenyl pendent groups exhibited higher fluorescence quantum yields and emission maxima redshifted compared with the corresponding polymers with phenyl pendent groups. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2381–2391, 2000  相似文献   

16.
An interesting flourophore, 4‐(2,5‐dimethoxyphenylmethelene)‐2‐phenyl‐5‐oxazolone (DMPO) was synthesized by mixing an equivalent molar quantity of hippuric acid and 2,5‐dimethoxybenzaldehyde in acetic anhydride in the presence of anhydrous sodium acetate. The absorption and fluorescence characteristics of 4‐(2,5‐dimethoxy‐phenylmethelene)‐2‐phenyl‐5‐oxazolone (DMPO) were investigated in different solvents. DMPO dye exhibits red shift in both absorption and emission spectra as solvent polarity increases, indicating change in the dipole moment of molecules upon excitation due to an intramolecular charge transfer interaction. The fluorescence quantum yield depends strongly on the properties of the solvents, which was attributed to positive and negative solvatokinetic effects. A crystalline solid of DMPO gave strong excimer like emission at 630 nm due to the excitation of molecular aggregates. This is expected from the idealized crystal structure of the dye that belongs to the B‐type class of Steven's Classification. DMPO displayed fluorescence quenching by triethylamine via nonemissive exciplex formation.  相似文献   

17.
Two donor–bridge–acceptor conjugates (5,10,15,20‐tetrakis[4‐(N,N‐diphenylaminobenzoate)phenyl] porphyrin (TPPZ) and 5,10,15,20‐tetrakis[4‐(N,N‐diphenylaminostyryl)phenyl] porphyrin (TPPX)) were covalently linked to triphenylamine (TPA) at the meso‐position of porphyrin ring. The triphenylamine entities were expected to act as energy donors and the porphyrins to act as an energy acceptor. In this paper, we report on the synthesis of these multibranched‐porphyrin‐functionalized Pt nanocomposites. The conjugates used here not only served as a stabilizer to prevent agglomeration of Pt nanoparticles, but also as a light‐harvesting photosensitizer. The occurrence of photoinduced electron‐transfer processes was confirmed by time‐resolved fluorescence and photoelectrochemical spectral measurements. The different efficiencies for energy and electron transfer in the two multibranched porphyrins and the functionalized Pt nanocomposites were attributed to diverse covalent linkages. Moreover, in the reduction of water to produce H2, the photocatalytic activity of the Pt nanocomposite functionalized by TPPX, in which the triphenylamine and porphyrin moieties are bonded through an ethylene bridge, was much higher than that of the platinum nanocomposite functionalized by TPPZ, in which the two moieties are bonded through an ester. This investigation demonstrates the fundamental advantages of constructing donor–bridge–acceptor conjugates as highly efficient photosensitizers based on efficient energy and electron transfer.  相似文献   

18.
Two D‐π‐A‐type 2,2,2‐trifluoroacetophenone derivatives, namely, 4′‐(4‐( N,N‐diphenyl)amino‐phenyl)‐phenyl‐2,2,2‐trifluoroacetophenone (PI‐Ben) and 4′‐(4‐(7‐(N,N‐diphenylamino)‐9,9‐dimethyl‐9H‐fluoren‐2‐yl)‐phenyl‐2,2,2‐trifluoroacetophenone (PI‐Flu), are developed as high‐performance photoinitiators combined with an amine or an iodonium salt for both the free‐radical polymerization of acrylates and the cationic polymerization of epoxides and vinyl ether upon exposure to near‐UV and visible light‐emitting diodes (LEDs; e.g., 365, 385, 405, and 450 nm). The photochemical mechanisms are investigated by UV‐Vis spectra, molecular‐orbital calculations, fluorescence, cyclic voltammetry, photolysis, and electron‐spin‐resonance spin‐trapping techniques. Compared with 2,2,2‐trifluoroacetophenone, both photoinitiators exhibit larger redshift of the absorption spectra and higher molar‐extinction coefficients. PI‐Ben and PI‐Flu themselves can produce free radicals to initiate the polymerization of acrylate without any added hydrogen donor. These novel D‐π‐A type trifluoroacetophenone‐based photoinitiating systems exhibit good efficiencies (acrylate conversion = 48%–66%; epoxide conversion = 85%–95%; LEDs at 365–450 nm exposure) even in low‐concentration initiators (0.5%, w/w) and very low curing light intensities (1–2 mW cm?2). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1945–1954  相似文献   

19.
Two series of related donor–acceptor conjugated dipolar, pseudo‐quadrupolar (V‐shaped) and octupolar molecular systems based on the p‐dimesitylborylphenylethynylaniline core, namely, 4‐(4‐dimesitylborylphenylethynyl)‐N,N‐dimethylaniline, 4‐[4‐(4‐dimesitylborylphenylethynyl)phenylethynyl]‐N,N‐dimethylaniline, 3,6‐bis(4‐dimesitylborylphenylethynyl)‐Nn‐butylcarbazole and tris[4‐(4‐dimesitylborylphenylethynyl)phenyl]amine, and on the E‐p‐dimesitylborylethenylaniline motif, namely, E‐4‐dimesitylborylethenyl‐N,N‐di(4‐tolyl)aniline, 3,6‐bis(E‐dimesitylborylethenyl)‐Nn‐butylcarbazole and tris(E‐4‐dimesitylborylethenylphenyl)amine have been synthesised by palladium‐catalyzed cross‐coupling and hydroboration routes, respectively. Their absorption and emission maxima, fluorescence lifetimes and quantum yields have been obtained and their two‐photon absorption (TPA) spectra and TPA cross‐sections have been examined. Of these systems, the octupolar compound tris(E‐4‐dimesitylborylethenylphenyl)amine has been shown to exhibit the largest TPA cross‐section among the two series of approximately 1000 GM at 740 nm. Its TPA performance is comparable to those of other triphenylamine‐based octupoles of similar size. The combination of such large TPA cross‐sections and high emission quantum yields, up to 0.94, make these systems attractive for applications involving two‐photon excited fluorescence (TPEF).  相似文献   

20.
The fluorescence properties of AIE‐active N‐amidinated fluoroquinolones, efficiently obtained by a perfluoroaryl azide–aldehyde–amine reaction, have been studied. The fluorophores were discovered to elicit a highly sensitive fluorescence quenching response towards guest molecules with hydrogen‐bond‐donating ability. This effect was evaluated in a range of protic/aprotic solvents with different H‐bonding capabilities, and also in aqueous media. The influence of acid/base was furthermore addressed. The hydrogen‐bonding interactions were studied by IR, NMR, UV/Vis and time‐resolved fluorescence decay, revealing their roles in quenching of the fluorescence emission. Due to the pronounced quenching property of water, the N‐amidinated fluoroquinolones could be utilized as fluorescent probes for quantifying trace amount of water in organic solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号