首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new and atom‐economic palladium‐catalyzed aminomethylamination of allenes with aminals by C? N bond activation is described. This direct and operationally simple method provides a fundamentally novel approach for the synthesis of 1,3‐diamines. Mechanistic studies suggest that a unique cationic π‐allylpalladium complex containing an aminomethyl moiety is generated as a key intermediate through the carbopalladation of the allene with a cyclometalated palladium–alkyl species.  相似文献   

2.
A new and atom‐economic palladium‐catalyzed aminomethylamination of allenes with aminals by C N bond activation is described. This direct and operationally simple method provides a fundamentally novel approach for the synthesis of 1,3‐diamines. Mechanistic studies suggest that a unique cationic π‐allylpalladium complex containing an aminomethyl moiety is generated as a key intermediate through the carbopalladation of the allene with a cyclometalated palladium–alkyl species.  相似文献   

3.
An unprecedented α‐allylation of amines was achieved by combining palladium catalysis and visible‐light photoredox catalysis. In this dual catalysis process, the catalytic generation of allyl radical from the corresponding π‐allylpalladium intermediate was achieved without additional metal reducing reagents (redox‐neutral). Various allylation products of amines were obtained in high yields through radical cross‐coupling under mild reaction conditions. Moreover, the transformation was applied to the formal synthesis of 8‐oxoprotoberberine derivatives which show potential anticancer properties.  相似文献   

4.
A cationic palladium complex, [Pd(PPh3)2(MeCN)2](BF4)2, catalyzed the carbonylation of 2,3‐dien‐1‐ols under mild conditions. The dienols bearing two or more alkyl substituents on the diene part afforded 1,3‐diene‐2‐carboxylic acids successfully in tetrahydrofuran (THF), while those possessing one or no alkyl substituent gave polymers of the products exclusively. The former afforded the corresponding methyl esters in good yields when the reactions were carried out in methanol, while the latter afforded mainly the Diels–Alder reaction products of the resulting esters. An alkylidene group‐substituted π‐allylpalladium species has been presumed to be an intermediate. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
The mode of asymmetric induction in an enantioselective intramolecular allylic substitution reaction catalyzed by a combination of palladium and a chiral phosphoric acid was investigated by a combined experimental and statistical modeling approach. Experiments to probe nonlinear effects, the reactivity of deuterium‐labeled substrates, and control experiments revealed that nucleophilic attack to the π‐allylpalladium intermediate is the enantio‐determining step, in which the chiral phosphate anion is involved in stereoinduction. Using multivariable linear regression analysis, we determined that multiple noncovalent interactions with the chiral environment of the phosphate anion are integral to enantiocontrol in the transition state. The synthetic protocol to form chiral pyrrolidines was further applied to the asymmetric construction of C?O bonds at fully substituted carbon centers in the synthesis of chiral 2,2‐disubstituted benzomorpholines.  相似文献   

6.
The reaction pathway of an enantioselective 5‐endotrig‐type cyclization of 3‐alkenoic acids catalyzed by a chiral palladium–spiro‐bis(isoxazoline) complex, Pd–SPRIX, has been studied by density functional theory calculations. The most plausible pathway involves intramolecular nucleophilic attack of the carboxylate moiety on the C?C double bond activated by Pd–SPRIX and β‐H elimination from the resulting organopalladium intermediate. The enantioselectivity was determined in the cyclization step through the formation of a π‐olefin complex, in which one of the two enantiofaces of the olefin moiety was selected. The β‐H elimination occurs via a seven‐membered cyclic structure in which the acetate ligand plays a key role in lowering the activation barrier of the transition state. In the elimination step, the SPRIX ligand was found to behave as a monodentate ligand due to the hemilability of one of the isoxazoline units thereby facilitating the elimination. Natural population analysis of this pathway showed that the more weakly electron‐donating SPRIX ligand, compared with the bis(oxazoline) ligand, BOX, facilitated the formation of the π‐olefin complex intermediate, leading to a smaller overall activation energy and a higher reactivity of the Pd–SPRIX catalyst.  相似文献   

7.
Reaction mechanisms for the isomerization of prostaglandin H2 to thromboxane A2, and degradation to 12‐L‐hydroxy‐5,8,10‐heptadecatrienoic acid (HHT) and malondialdehyde (MDA), catalyzed by thromboxane synthase, were investigated using the unrestricted Becke‐three‐parameter plus Lee–Yang–Parr (UB3LYP) density functional level theory. In addition to the reaction pathway through FeIV‐porphyrin intermediates, a new reaction pathway through FeIII‐porphyrin π‐cation radical intermediates was found. Both reactions proceed with the homolytic cleavage of endoperoxide O? O to give an alkoxy radical. This intermediate converts into an allyl radical intermediate by a C? C homolytic cleavage, followed by the formation of thromboxane A2 having a 6‐membered ring through a one electron transfer, or the degradation into HHT and MDA. The proposed mechanism shows that an iron(III)‐containing system having electron acceptor ability is essential for the 6‐membered ring formation leading to thromboxane A2. Our results suggest that the step of the endoperoxide O? O homolytic bond cleavage has the highest activation energy following the binding of prostaglandin H2 to thromboxane synthase.  相似文献   

8.
An olefin‐assisted palladium‐catalyzed oxidative carbocyclization–alkoxycarbonylation of bisallenes to afford seven‐membered carbocycles has been established. This dehydrogenative coupling reaction showed excellent substrate scope and functional group compatibility. The reaction exhibited high chemo‐ and regioselectivity, and ester 3 was the only product obtained. The olefin unit has been proven to be indispensable during the reaction. Moreover, intramolecular oxidative coupling suggests that the reaction proceeds via a (π‐allyl)palladium intermediate.  相似文献   

9.
《化学:亚洲杂志》2017,12(23):2991-2995
A domino carbopalladation reaction of haloalkynes is presented. Remarkably, the four‐time carbopalladation process converts the carbon‐carbon triple bonds of haloalkynes stepwise into carbon–carbon double bonds, and finally to carbon‐carbon single bonds. Features of this reaction are that the carbon‐carbon double bonds of stable vinyl palladium intermediates are transformed into carbon‐carbon single bonds with the generation of unstable alkyl palladium intermediates. The subsequently formed π‐allylpalladium species are independently trapped by N ‐tosylhydrazones, boronic acids, and B2pin2 in a highly diastereoselective manner, delivering the corresponding polycyclic and twisted products with a bicyclo[3.2.1]oct‐2‐en‐3‐yl)tricyclo[3.2.1.02,4]octane core skeleton in moderate to good yields via C−C and C−B bond formations. Significantly, the dual roles of norbornenes, ring construction and ring expansion, and the identification of electron‐rich tri(2‐furyl)phosphine as the ligand are found to be critical for the success of these transformations.  相似文献   

10.
A palladium‐catalyzed selective C? H bond trifluoroethylation of aryl iodides has been explored. The reaction allows for the efficient synthesis of a variety of ortho‐trifluoroethyl‐substituted styrenes. Preliminary mechanistic studies indicate that the reaction might involve a key PdIV intermediate, which is generated through the rate‐determining oxidative addition of CF3CH2I to a palladacycle; the bulky nature of CF3CH2I influences the reactivity. Reductive elimination from the PdIV complex then leads to the formation of the aryl–CH2CF3 bond.  相似文献   

11.
To expand the scope of meta ‐functionalization, a pyrimidine‐based template effective for the formation of β‐aryl aldehydes and ketones, using allyl alcohols, by meta ‐C−H activation of benzylsulfonyl esters is described. In addition, α,β‐unsaturated aldehydes were generated by in situ olefination and deprotection of allyl benzyl ethers. These new functionalizations at the meta ‐position of an arene have also been successfully implemented in benzylphosphonate, phenethyl carbonyl, and phenethylsulfonyl ester scaffolds. Key to these successful new functionalizations is the creation of an electropositive palladium center by accepting the electron cloud from the metal to the energetically low‐lying π‐orbitals of pyrimidine ring, and it favors coordination of allyl alcohol to the metal center.  相似文献   

12.
The treatment of an aldehyde with a tertiary homoallylic alcohol at 100–250 °C in the presence of cesium carbonate and a rhodium catalyst leads to allyl transfer from the homoallylic alcohol to the aldehyde. The process includes Rh‐mediated retroallylation to form an allyl rhodium species as the key intermediate. The homoallylic alcohol formed initially through allyl transfer is converted under the reaction conditions into the corresponding saturated ketone when bulky ligands are used. Microwave heating at 250 °C accelerates the reaction significantly.  相似文献   

13.
Gold(III) π‐complexes have been authenticated recently with alkenes, alkynes, and arenes. The key importance of PdII π‐allyl complexes in organometallic chemistry (Tsuji–Trost reaction) prompted us to explore gold(III) π‐allyl complexes, which have remained elusive so far. The (P,C)AuIII(allyl) and (methallyl) complexes 3 and 3′ were readily prepared and isolated as thermally and air‐stable solids. Spectroscopic and crystallographic analyses combined with detailed DFT calculations support tight quasi‐symmetric η3‐coordination of the allyl moiety. The π‐allyl gold(III) complexes are activated towards nucleophilic additions, as substantiated with β‐diketo enolates.  相似文献   

14.
A B(C6F5)3‐catalyzed hydroarylation of a series of 1,3‐dienes with various phenols has been established through a combination of theoretical and experimental investigations, affording structurally diverse ortho‐allyl phenols. DFT calculations show that the reaction proceeds through a borane‐promoted protonation/Friedel–Crafts pathway involving a π‐complex of a carbocation–anion contact ion pair. This protocol features simple and mild reaction conditions, broad functional‐group tolerance, and low catalyst loading. The obtained ortho‐allyl phenols could be further converted into flavan derivatives using B(C6F5)3 with good cis diastereoselectivity. Furthermore, this transformation was applied in the late‐stage modification of pharmaceutical compounds.  相似文献   

15.
A new mode of activation of an imine via a rare aza‐substituted π‐allyl complex is described. Palladium‐catalyzed C(sp3)? H activation of the N‐allyl imine and the subsequent nucleophilic attack by the α‐alkyl cyanoester produced the 1‐aza‐1,3‐diene as the sole regioisomer. In contrast, nucleophilic attack by the α‐aryl cyanoester exclusively delivered the 2‐aza‐1,3‐diene, which was employed in an inverse‐electron‐demand Diels–Alder reaction for heterobiaryl synthesis.  相似文献   

16.
Palladium‐catalyzed asymmetric allylic alkylation of nonstabilized ketone enolates to generate quaternary centers has been achieved in excellent yield and enantioselectivity. Optimized conditions consist of performing the reaction in the presence of two equivalents of LDA as base, one equivalent of trimethytin chloride as a Lewis acid, 1,2‐dimethoxyethane as the solvent, and a catalytic amount of a chiral palladium complex formed from π‐allyl palladium chloride dimer 3 and cyclohexyldiamine derived chiral ligand 4 . Linearly substituted, acyclic 1,3‐dialkyl substituted, and unsubstituted allylic carbonates function well as electrophiles. A variety of α‐tetralones, cyclohexanones, and cyclopentanones can be employed as nucleophiles. The absolute configuration generated is consistent with the current model in which steric factors control stereofacial differentiation. The quaternary substituted products available by this method are versatile substrates for further elaboration.  相似文献   

17.
Control of 1,2‐ and 1,4‐addition of substituted phenols to allylic oxides is achieved by intercepting palladium π‐allyl complexes. The interconversion of palladium complexes results in the total synthesis of MK 7607, cyathiformine B type, streptol, and a new cyclitol.  相似文献   

18.
In this work, we describe a palladium‐catalyzed intermolecular O acylation of α‐diazoesters with ortho‐bromobenzaldehydes. The C(sp2)?H bond activation of the aldehyde is enabled by migratory insertion of a palladium carbene intermediate. The diazoesters act as modular three‐atom units to build up key seven‐membered palladacycles, which are transformed into a variety of isocoumarin derivatives upon reductive elimination. Mechanistic experiments and DFT calculations provide insight into the reaction pathway.  相似文献   

19.
The title compound, di‐μ‐chloro‐bis{[(2,3,4‐η)‐ethyl 6,6‐di­methyl‐5‐oxohept‐2‐enoato]­palladium(II)}, [Pd2Cl2(C11­H17­O3)2], is a binuclear chloro‐bridged palladium allyl complex that was obtained serendipitously From the reaction of 6,6‐di­methyl‐2‐hepten‐4‐ynoate with Na2PdCl4 in water‐containing alcohol. The allyl group is substituted with an ester and a tert‐butyl­carboxy group. The dimeric mol­ecules link via C—H?O contacts into a two‐dimensional network parallel to the bc plane.  相似文献   

20.
The palladium nanoparticles were successfully stabilized with an average diameter of 6–7 nm through the coordination of palladium and terpyridine‐based ligands grafted on graphene oxide surface. The graphene oxide supported palladium nanoparticles were thoroughly characterized and applied as an efficient heterogeneous catalyst in carbon–carbon (Suzuki‐Miyaura, Mizoroki‐Heck coupling reactions) and carbon–heteroatom (C‐N and C‐O) bond‐forming reactions. The catalyst was simply recycled from the reaction mixture and was reused consecutive four times with small drop in catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号