首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functionalization of periodic mesoporous organosilicas (PMOs) with high loadings of pendant organic groups to form bifunctional PMOs with ordered mesostructures remains a challenging objective. Herein, we report that well‐ordered ethane‐bridged PMOs functionalized with exceptionally high loadings of pendant carboxylic acid groups (up to 80 mol % based on silica) were synthesized by the co‐condensation of 1,4‐bis(trimethoxysilyl)ethane (BTME) and carboxyethylsilanetriol sodium salt (CES) with Pluronic P123 as the template and KCl as an additive under acidic conditions. The bifunctional materials were characterized by using a variety of techniques, including powder X‐ray diffraction, nitrogen‐adsorption/desorption, TEM, and solid‐state 13C and 29Si NMR spectroscopy. Zeta‐potential measurements showed that the surface negative charges increased with increasing the CES content. This property makes them potential candidates for applications in drug adsorption. The excellent adsorption capacity of these bifunctional PMOs towards an anticancer drug (doxorubicin) was also demonstrated.  相似文献   

2.
Well‐ordered periodic mesoporous organosilicas (PMOs) functionalized with high contents of carboxylic acid (?COOH) groups, up to 85 mol % based on silica, were synthesized by co‐condensation of 1,2‐bis(triethoxysilyl)ethane (BTEE) and carboxyethylsilanetriol sodium salt (CES) under acidic conditions by using alkyl poly(oxyethylene) surfactant Brij 76 as a structure‐directing agent. A variety of techniques including powder X‐ray diffraction (XRD), nitrogen adsorption/desorption, Fourier‐transformed infrared (FTIR), transmission electron microscopy (TEM), 13C‐ and 29Si solid‐state nuclear magnetic resonance (NMR) were used to characterize the products. The materials thus obtained were used as an effective support to synthesize metal nanoparticles (Ag and Pt) within the channel of 2D hexagonal mesostructure of PMOs. The size and distribution of the nanoparticles were observed to be highly dependent on the interaction between the carboxylic acid functionalized group and the metal precursors. The size of Pt nanoparticles reduced from 3.6 to 2.5 nm and that of Ag nanoparticles reduced from 5.3 to 3.4 nm with the increase in the ?COOH loading from 10 to 50 %.  相似文献   

3.
Highly ordered benzene‐bridged periodic mesoporous organosilicas (PMOs) that were functionalized with exceptionally high loadings of carboxylic acid groups (COOH), up to 80 mol % based on silica, have been synthesized and their use as adsorbents for the adsorption of methylene blue (MB), a basic dye pollutant, and for the loading and release of doxorubicin (DOX), an anticancer drug, is demonstrated. These COOH‐functionalized benzene? silicas were synthesized by the co‐condensation of 1,4‐bis(triethoxysilyl) benzene (BTEB) and carboxyethylsilanetriol sodium salt (CES), an organosilane that contained a carboxylic acid group, in the presence of non‐ionic oligomeric surfactant Brij 76 in acidic medium. The materials thus obtained were characterized by a variety of techniques, including powder X‐ray diffraction (XRD), nitrogen‐adsorption/desorption isotherms, TEM, and 13C and 29Si solid‐state NMR spectroscopy. Owing to the exceptionally high loadings of COOH groups, their high surface areas, and possible π? π‐stacking interactions, these adsorbents have very high adsorption capacities and extremely rapid adsorption rates for MB removal and for the controlled loading/release of DOX, thus manifesting their great potential for environmental and biomedical applications.  相似文献   

4.
Pharmaceutical antibiotics, as emerging contaminants, are usually composed of several functional groups that endow them with the ability to interact with adsorbents through different interactions. This makes the preparation of adsorbents tedious and time‐consuming to screen appropriate functionalized materials. Herein, we describe the synthesis of clickable SBA‐15 and demonstrate its feasibility as a screening material for the adsorption of antibiotics based on similar adsorption trends on materials with similar functional groups obtained by a click reaction and cocondensation/grafting methods.  相似文献   

5.
Janus‐type dendrimer‐like poly(ethylene oxide)s (PEOs) of 1st, 2nd, and 3rd generation carrying terminal hydroxyl functions on one side and cleavable ketal groups on the other were used as substrates to conjugate folic acid as a folate receptor and camptothecin (CPT) as a therapeutic drug in a sequential fashion. The conjugation of both FA and CPT was accomplished by “click chemistry” based on the 1,3 dipolar cycloaddition coupling reaction. First, the hydroxyl functions present at one face of Janus‐type dendrimer‐like PEOs were transformed into alkyne groups through a simple Williamson‐type etherification reaction. Next, the ketals carried by the other face of the dendrimer‐like PEOs were hydrolyzed, yielding twice as many hydroxyls which were subsequently subjected to an esterification reaction using 2‐bromopropionic bromide. Before substituting azides for the bromide of 2‐bromopropionate esters just generated in the presence of NaN3, an azido‐containing amidified FA derivative was reacted through click chemistry with alkyne functions introduced on the other face of the dendrimer‐like PEOs. A purposely designed alkyne‐functionalized biomolecule derived from CPT was conjugated to the azido functions carried by the dendritic PEOs by a second “click reaction.” In this case, twice as many CPT as FA moieties were finally conjugated to the two faces of the Janus‐type dendrimer‐like PEOs, the numbers of folate and CPT introduced being 2 and 4, 4 and 8, and 8 and 16 for samples of 1st, 2nd, and 3rd generation, respectively (route A). An alternate route for functionalizing the dendrimer‐like PEO of 1st generation consisted, first, in conjugating the azido‐containing CPT onto the alkyne groups present on one face of the dendritic PEO scaffold. The alkyne‐functionalized FA was further introduced by click chemistry after the bromides of 2‐bromopropionate esters were chemically transformed into azido groups. The corresponding prodrug thus contains 2 CPT and 4 FA external moieties (route B). Every reaction step product was thoroughly characterized by 1H NMR spectroscopy. A preliminary investigation into the water solution properties of these functionalized dendritic PEOs is also presented. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
Phenyl‐bridged periodic mesoporous organosilicas (PMOs) functionalized with diphenylphosphino (PPh2‐) ligands were synthesized via a surfactant‐directed self‐assembly approach, and were used as a support to immobilize Ni(II) organometallic complex by coordination interaction. In comparison with Ni‐PPh2‐SBA‐15 and Ni‐PPh2‐PMOs(Et) catalysts, the as‐prepared Ni‐PPh2‐PMOs(Ph) exhibited superior catalytic reactivity and selectivity in water‐medium Sonogashira reaction. A control experiment demonstrated that its high activity could be attributed to the high dispersion of Ni(II) active sites and ordered mesopore channels, which effectively diminished diffusion limitation. Meanwhile, the phenyl organic groups in the support wall enhanced surface hydrophobicity, which promoted the adsorption for organic reactant molecules. Moreover, it displayed almost the same catalytic efficiency with the corresponding homogeneous Ni(PPh3)2Cl2 catalyst and could be used repetitively, which was considered as a more environmentally friendly catalytic process since it simultaneously avoided the use of noble metal active species and toxic organic solvents. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
《化学:亚洲杂志》2017,12(24):3162-3171
New amino‐acid‐bridged periodic mesoporous organosilicas (PMOs) were constructed by hydrolysis and condensation reactions under acid conditions in the presence of a template. The tyrosine bissilylated organic precursor (TBOS) was first prepared through a multistep reaction by using tyrosine (a natural amino acid) as the starting material. PMOs with the tyrosine framework (Tyr‐PMOs) were constructed by simultaneously using TBOS and tetraethoxysilane as complex silicon sources in the condensation process. All the Tyr‐PMOs materials were characterized by XRD, FTIR spectroscopy, N2 adsorption–desorption, TEM, SEM, and solid‐state 29Si NMR spectroscopy to confirm the structure. The horseradish peroxidase (HRP) enzyme was first immobilized on these new Tyr‐PMOs materials. Optimal conditions for enzyme adsorption included a temperature of 40 °C, a time of 8 h, and a pH value of 7. Furthermore, the novel Tyr‐PMOs materials could store HRP for approximately 40 days and maintained the enzymatic activity, and the Tyr‐PMOs–10 % HRP with the best immobilization effect could be reused at least eight times.  相似文献   

8.
Hollow mesoporous silica nanoparticles (HMSNs) grafted with a photo‐responsive copolymer containing coumarin groups were successfully prepared. With uniform polystyrene nanoparticles and cetyltrimethylammonium bromide correspondingly as the template of core and channel, HMSNs were made from tetraethyloxysilane in alkalic condition. Epoxy groups were introduced onto the outer surface of HMSNs with γ‐(2,3‐epoxypropoxy)propyltrimethoxysilane and converted into azido groups with sodium azide, resulting in azido‐functionalized HMSNs (azido‐HMSNs). Meanwhile, single‐electron transfer‐living radical copolymerization of methyl methacrylate (MMA) and 7‐(2‐methacryloyloxy)‐4‐methylcoumarin (CMA) with propargyl 2‐bromoisobutyrate as the initiator produced alkynyl‐capped P(MMA‐co‐CMA) [alkynyl‐P(MMA‐co‐CMA)]. Finally, photo‐responsive HMSNs grafted with P(MMA‐co‐CMA) [HMSN‐g‐P(MMA‐co‐CMA)] was achieved through the click reaction between azido‐HMSNs and alkynyl‐P(MMA‐co‐CMA). Different techniques such as transmission electron microscopy, Fourier transform infrared spectroscopy, and thermal gravimetric analysis confirmed the successful preparation of the resultant hybrid nanoparticles and their intermediates. Because of its hollow core, mesoporous shell channels and light responsiveness, the coumarin‐modified HMSNs would be an interesting nano‐vehicle for guest molecules. Thus, the loading and release of pyrene with HMSN‐g‐P(MMA‐co‐CMA) was studied. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3791–3799  相似文献   

9.
In this contribution, a versatile approach for the synthesis of functionalized particles for drug delivery is presented, using two nonaggressive standardized procedures. The first procedure considered is the functionalization of an azido‐terminated α‐norbornenyl poly(ethylene oxide) (PEO) macromonomer with an alkyne‐containing active molecule via the copper catalyzed azide alkyne cycloaddition, click type reaction. The functionalized macromonomer is then polymerized by Ring‐Opening Metathesis Polymerization (ROMP) in dispersion to form functionalized particles. The second procedure consists in synthesizing particles by ROMP in dispersed media of norbornene with azido‐terminated α‐norbornenyl PEO macromonomer. The ROMP was initiated by the first generation Grubbs catalyst. Such functionalized core‐shell particles have stealthy properties due to their PEO shell and can be viewed as universal nanocarriers on which any alkyne‐modified active molecule can be grafted by click chemistry. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

10.
A novel kind of macrocyclic‐host‐functionalized periodic mesoporous organosilica (PMO) with excellent and reversible recognition of PbII was developed. The macrocyclic host molecule cis‐dicyclohexano[18]crown‐6, with strong affinity to PbII, was carefully modified as a bridged precursor to build the PMO material. To break down the limit of the functionalization degree for PMOs incorporated with large‐sized moieties, a site‐selective post‐functionalization method was proposed to further decorate the external surface of the PMO material. The selective recognition ability of the upgraded PMO material towards PbII was remarkably enhanced without destroying the mesoporous ordering. Solid‐state 13C and 29Si NMR spectroscopy, X‐ray photoelectron spectroscopy (XPS), XRD, TEM, and nitrogen adsorption–desorption isotherm measurements were utilized for a full characterization of the structure, micromorphology, and surface properties. Reversible binding of PbII was realized in the binding–elution cycle experiments. The mechanism of the supramolecular interaction between the macrocyclic host and metal ion was discussed. The synthetic strategy can be considered a general way to optimize the properties of PMOs as binding materials for practical use while preserving the mesostructure.  相似文献   

11.
以三嵌段共聚物P123为模板剂, 在酸性条件下通过1,2-三乙氧基硅基乙烷(BTESE)和3-含氧缩水甘油基-丙基-三甲氧基硅烷(GPTMS)共水解缩聚合成环氧基修饰的周期性介孔氧化硅(PMOs), 以修饰后的PMOs为载体对漆酶进行固定化, 研究了环氧基修饰对固定化酶稳定性的影响. 通过XRD、TEM、固态NMR和N2吸附等手段表征材料的修饰效果、孔结构以及漆酶的固定化. 结果表明, 修饰后的材料保持良好的孔结构, 环氧基的修饰有利于提高固定化酶的活力, 基于环氧基修饰PMOs的固定化酶具有较高稳定性.  相似文献   

12.
The preparation and characterization of a set of periodic mesoporous organosilicas (PMOs) that contain different fractions of 1,3‐bis(3‐trimethoxysilylpropyl)imidazolium chloride (BTMSPI) groups uniformly distributed in the silica mesoporous framework is described. The mesoporous structure of the materials was characterized by powder X‐ray diffraction, transmission electron microscopy, and N2 adsorption–desorption analysis. The presence of propyl imidazolium groups in the silica framework of the materials was also characterized by solid‐state NMR spectroscopy and diffuse‐reflectance Fourier‐transform infrared spectroscopy. The effect of the BTMSPI concentration in the initial solutions on the structural properties (including morphology) of the final materials was also examined. The total organic content of the PMOs was measured by elemental analysis, whereas their thermal stability was determined by thermogravimetric analysis. Among the described materials, it was found that PMO with 10 % imidazolium content is an effective host for the immobilization of perruthenate through an ion‐exchange protocol. The resulting Ru@PI‐10 was then employed as a recyclable catalyst in the highly efficient aerobic oxidation of various types of alcohols.  相似文献   

13.
Side‐chain pyrene functional poly(vinyl alcohol) (PVA) was synthesized by using “click chemistry” strategy. First, partial tosylation of PVA with p‐toluene sulfonyl chloride were performed. The resulting PVA‐Ts polymer was then quantitatively converted into poly(vinyl alcohol)‐azide (PVA‐N3) in the presence of NaN3/DMF at 60 °C. Propargyl pyrene was prepared independently as a photoactive click component. Finally, azido functionalized PVA was coupled to propargyl pyrene with high efficiency by click chemistry. Incorporation of pyrene functionality in the resulting polymer was confirmed by spectral analysis. It is also shown that pyrene functionalized PVA (PVA‐Py) exhibited characteristic fluorescence properties and improved solubility in highly polar solvents such as water, DMSO, and DMF as well as less polar solvent such as THF compared with pristine PVA. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1317–1326, 2009  相似文献   

14.
Two complementary tandem strategies based on the one‐pot combination of click chemistry and atom transfer radical polymerization (ATRP) are studied. Initially, functionalized random copolymers are obtained by copolymerization of methyl methacrylate and propargyl methacrylate simultaneously to the click chemistry coupling of a monofunctional azide. Then, an approach based on the copolymerization of methyl methacrylate and 11‐azido‐undecanoyl methacrylate simultaneously to the click chemistry coupling of a monofunctional alkyne is also investigated. For both the approach, polymerization and click chemistry coupling are catalyzed by CuBr and bipyridine (Bipy) in diphenylether at 90 °C. The [Bipy]/[CuBr] ratio is varied from 2 to 25 and the ratio of functionalized comonomer from 20 to 70 mol %. Both the tandem strategies proceed with good yields (50–80%) and allow a good control over the characteristics of the resulting random copolymers and macromolecular brushes (Mn ~ 15,000–40,000 g/mol and PDI ~ 1.3–2.0) as well as quantitative click functionalization as characterized by 1H NMR and size exclusion chromatography analyses. Although the click process is generally completed at the early stage of the process, the rate of polymerization depends on the amount of bipyridine involved. It was found that extending most of the polymerization process out of the click reaction regime results in a better control of the polymerization, preventing the significant occurrence of side reactions. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3803–3813, 2009  相似文献   

15.
以周期性介孔有机硅(periodic mesoporous organosilicas,PMOs)中的有机桥联基团亚苯基为反应位对其进行氯甲基化反应,得到氯甲基官能化的PMOs-CH2Cl,然后再通过-CH2Cl和V-Saldien配合物中的-NH-进行反应得到钒席夫碱配合物官能化的杂化材料V-PMOs催化剂.采用XRD、N2吸附、FTIR、UV-vis、ICP和催化反应等手段对所制杂化材料的物化和催化性能进行了较为详细的研究,结果表明采用该法可将钒席夫碱配合物成功键联到PMOs上,且所制杂化材料同采用类似方法制备的V-SBA-15催化材料相对比,在无溶剂以叔丁基过氧化氢为引发剂,氧气为氧化剂的环己烷氧化反应中表现出定向转化为环己酮和环己醇的总选择性,具有点击反应的特性.  相似文献   

16.
Heterogenization of metal‐complex catalysts for water oxidation without loss of their catalytic activity is important for the development of devices simulating photosynthesis. In this study, efficient heterogeneous iridium complexes for water oxidation were prepared using bipyridine‐bridged periodic mesoporous organosilica (BPy‐PMO) as a solid chelating ligand. The BPy‐PMO‐based iridium catalysts (Ir‐BPy‐PMO) were prepared by postsynthetic metalation of BPy‐PMO and characterized through physicochemical analyses. The Ir‐BPy‐PMOs showed high catalytic activity for water oxidation. The turnover frequency (TOF) values for Ir‐BPy‐PMOs were one order of magnitude higher than those of conventional heterogeneous iridium catalysts. The reusability and stability of Ir‐BPy‐PMO were also examined, and detailed characterization was conducted using powder X‐ray diffraction, nitrogen adsorption, 13C DD MAS NMR spectroscopy, TEM, and XAFS methods.  相似文献   

17.
Derivatized β‐cyclodextrin (β‐CD) functionalized monolithic columns were prepared by a “one‐step” strategy using click chemistry. First, the intended derivatized β‐CD monomers were synthesized by a click reaction between propargyl methacrylate and mono‐6‐azido‐β‐CD and then sulfonation or methylation was carried out. Finally, monolithic columns were prepared through a one‐step in situ copolymerization of the derivatized β‐CD monomer and ethylene glycol dimethacrylate. The sulfated β‐CD‐based monolith was successfully applied to the hydrophilic interaction liquid chromatography separation of nucleosides and small peptides, while the methylated β‐CD‐functionalized monolith was useful for the separation of nonpolar compounds and drug enantiomers in capillary reversed‐phase liquid chromatography. The structures of the monomers were characterized by Fourier transform infrared spectroscopy and mass spectrometry. The physicochemical properties and column performance of monoliths were evaluated by scanning electron microscopy and micro high performance liquid chromatography. This strategy has considerable prospects for the preparation of other derivatized CD‐functionalized methacrylate monoliths.  相似文献   

18.
Novel types of dual‐functional surface‐attached polymer brushes were developed by interface‐mediated reversible addition‐fragmentation chain transfer (RAFT) polymerization of 6‐azidohexylmethacrylate using the surface‐immobilized RAFT agent and the free initiator. The interface‐mediated RAFT polymerization produced silicon substrate coated with dual‐functional (azido groups from monomer and carboxylic acid groups from RAFT agent) poly(6‐azidohexylmethacrylate) [poly (AHMA)] with a grafting density as high as 0.59 chains/nm2. Dual‐functional polymer brushes can represent an attractive chemical platform to deliberately introduce other molecular units at specific sites. The azido groups of the poly(AHMA) brushes can be modified with alkyl groups via click reaction, known for their DNA hybridization, while the carboxylic acid end groups can be reacted with amine groups via amide reaction, known for their antifouling properties. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1696–1706  相似文献   

19.
The synthesis of a generation 5 (G5) poly(amidoamine) (PAMAM) dendrimer platform having cyclooctyne ligands that were subsequently be used for a copper-free Huisgen 1,3-dipolar cycloaddition (click reaction) with azido modified methotrexate is described. The G5 PAMAM dendrimer was first partially (70%) acetylated and then coupled with 20 cyclooctyne ligands through amide bonds. The remaining primary amine groups on the dendrimer surface were neutralized by acetylation. The platform was then ‘clicked’ with different numbers (5, 10, and 17) of γ-azido functionalized methotrexate. The copper-free click reactions were stoichiometric with excellent yields.  相似文献   

20.
The integration of organic and inorganic fragments within the pore walls of the periodic mesoporous organosilicas (PMOs) represents one of the recent breakthroughs in material science. The resulting PMOs are promising materials for applications in such areas as catalysis, adsorption, separation and drug-delivery. We summarize here the recent progress made in the synthesis of PMOs with hierarchical structures and large functional groups, with special emphasis on the chiral mesoporous organosilicas and their ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号