首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 114 毫秒
1.
Asymptotic solutions are derived for inhomogeneous differential equations having a large real or complex parameter and a simple turning point. They involve Scorer functions and three slowly varying analytic coefficient functions. The asymptotic approximations are uniformly valid for unbounded complex values of the argument, and are applied to inhomogeneous Airy equations having polynomial and exponential forcing terms. Error bounds are available for all approximations, including new simple ones for the well-known asymptotic expansions of Scorer functions of large complex argument.  相似文献   

2.
The usual tools for computing special functions are power series, asymptotic expansions, continued fractions, differential equations, recursions, and so on. Rather seldom are methods based on quadrature of integrals. Selecting suitable integral representations of special functions, using principles from asymptotic analysis, we develop reliable algorithms which are valid for large domains of real or complex parameters. Our present investigations include Airy functions, Bessel functions and parabolic cylinder functions. In the case of Airy functions we have improvements in both accuracy and speed for some parts of Amos's code for Bessel functions.  相似文献   

3.
Second-order linear ordinary differential equations with a large parameter u are examined. Classic asymptotic expansions involving Airy functions are applicable for the case where the argument z lies in complex domain containing a simple turning point. In this article, such asymptotic expansions are converted into convergent series, where u appears in an inverse factorial, rather than an inverse power. The domain of convergence of the new expansions is rigorously established and is found to be an unbounded domain containing the turning point. The theory is then applied to obtain convergent expansions for Bessel functions of complex argument and large positive order.  相似文献   

4.
Asymptotic expansions of Stieltjes and generalized Stieltjes transforms of functions having an asymptotic expansion in negative integer powers of their variable have been exhaustively investigated by R. Wong. In this article, we extend this analysis to Stieltjes and generalized Stieltjes transforms of functions having an asymptotic expansion in negative rational powers of their variable. Distributional approach is used to derive asymptotic expansions of the Stieltjes and generalized Stieltjes transforms of this kind of functions for large values of the parameter(s) of the transformation. Error bounds are obtained at any order of the approximation for a large family of integrands. The asymptotic approximation of an integral involved in the calculation of the mass renormalization of the quantum scalar field and of the third symmetric elliptic integral are given as illustrations.  相似文献   

5.
Asymptotic expansions of Stieltjes and generalized Stieltjes transforms of functions having an asymptotic expansion in negative integer powers of their variable have been exhaustively investigated by R. Wong. In this article, we extend this analysis to Stieltjes and generalized Stieltjes transforms of functions having an asymptotic expansion in negative rational powers of their variable. Distributional approach is used to derive asymptotic expansions of the Stieltjes and generalized Stieltjes transforms of this kind of functions for large values of the parameter(s) of the transformation. Error bounds are obtained at any order of the approximation for a large family of integrands. The asymptotic approximation of an integral involved in the calculation of the mass renormalization of the quantum scalar field and of the third symmetric elliptic integral are given as illustrations.  相似文献   

6.
Hadamard expansions are constructed for Laplace-type integrals containing a parameter and an asymptotic variable x, which may be real or complex. These expansions yield a method of hyperasymptotic evaluation that remains valid throughout a range of the parameter corresponding to coalescence of a saddle point with an endpoint of the integration path. Numerical examples are given to illustrate the practical aspects of the computations.  相似文献   

7.
We give an overview of basic methods that can be used for obtaining asymptotic expansions of integrals: Watson’s lemma, Laplace’s method, the saddle point method, and the method of stationary phase. Certain developments in the field of asymptotic analysis will be compared with De Bruijn’s book Asymptotic Methods in Analysis. The classical methods can be modified for obtaining expansions that hold uniformly with respect to additional parameters. We give an overview of examples in which special functions, such as the complementary error function, Airy functions, and Bessel functions, are used as approximations in uniform asymptotic expansions.  相似文献   

8.
Taylor expansions of analytic functions are considered with respect to several points, allowing confluence of any of them. Cauchy-type formulas are given for coefficients and remainders in the expansions, and the regions of convergence are indicated. It is explained how these expansions can be used in deriving uniform asymptotic expansions of integrals. The method is also used for obtaining Laurent expansions in several points as well as Taylor-Laurent expansions.

  相似文献   


9.
A method for deriving transitional asymptotic expansions from integral representations is described and applied to Anger function and modified Hankel function. The method consists in deriving asymptotic expansions of the function considered as well as its first derivativeat the transition point using conventional methods such as Laplace’s method or the method of steepest descents. Since both the functions considered satisfy a second order linear differential equation, it is possible to obtain asymptotic expansions of higher order derivatives of the functions from the first two expansions. Thus asymptotic expressions for all the derivatives at the transition point are known and a Taylor expansion of the function in the neighbourhood of the transition point can be written. The method is also applicable to the generalized exponential integral, Weber’s parabolic cylinder function and Poiseuille function.  相似文献   

10.
Asymptotic expansions are given for large values of n of the generalized Bessel polynomials . The analysis is based on integrals that follow from the generating functions of the polynomials. A new simple expansion is given that is valid outside a compact neighborhood of the origin in the z-plane. New forms of expansions in terms of elementary functions valid in sectors not containing the turning points zi/n are derived, and a new expansion in terms of modified Bessel functions is given. Earlier asymptotic expansions of the generalized Bessel polynomials by Wong and Zhang (1997) and Dunster (2001) are discussed.  相似文献   

11.
A comprehensive account is given of the behavior of the eigenvalues of Mathieu's equation as functions of the complex variable q. The convergence of their small-q expansions is limited by an infinite sequence of rings of branch points of square-root type at which adjacent eigenvalues of the same type become equal. New asymptotic formulae are derived that account for how and where the eigenvalues become equal. Known asymptotic series for the eigenvalues apply beyond the rings of branch points; we show how they can now be identified with specific eigenvalues.  相似文献   

12.
Asymptotic expansions of certain finite and infinite integrals involving products of two Bessel functions of the first kind are obtained by using the generalized hypergeometric and Meijer functions. The Bessel functions involved are of arbitrary (generally different) orders, but of the same argument containing a parameter which tends to infinity. These types of integrals arise in various contexts, including wave scattering and crystallography, and are of general mathematical interest being related to the Riemann—Liouville and Hankel integrals. The results complete the asymptotic expansions derived previously by two different methods — a straightforward approach and the Mellin-transform technique. These asymptotic expansions supply practical algorithms for computing the integrals. The leading terms explicitly provide valuable analytical insight into the high-frequency behavior of the solutions to the wave-scattering problems.  相似文献   

13.
We examine a Maple implementation of two distinct approaches to Laplace's method used to obtain asymptotic expansions of Laplace-type integrals. One algorithm uses power series reversion, whereas the other expands all quantities in Taylor or Puiseux series. These algorithms are used to derive asymptotic expansions for the real valued modified Bessel functions of pure imaginary order and real argument that mimic the well-known corresponding expansions for the unmodified Bessel functions.  相似文献   

14.
Symmetric standard elliptic integrals are considered when two or more parameters are larger than the others. The distributional approach is used to derive seven expansions of these integrals in inverse powers of the asymptotic parameters. Some of these expansions also involve logarithmic terms in the asymptotic variables. These expansions are uniformly convergent when the asymptotic parameters are greater than the remaining ones. The coefficients of six of these expansions involve hypergeometric functions with less parameters than the original integrals. The coefficients of the seventh expansion again involve elliptic integrals, but with less parameters than the original integrals. The convergence speed of any of these expansions increases for an increasing difference between the asymptotic variables and the remaining ones. All the expansions are accompanied by an error bound at any order of the approximation. January 31, 2000. Date revised: May 18, 2000. Date accepted: August 4, 2000.  相似文献   

15.

Text

We give series expansions for the Barnes multiple zeta functions in terms of rational functions whose numerators are complex-order Bernoulli polynomials, and whose denominators are linear. We also derive corresponding rational expansions for Dirichlet L-functions and multiple log gamma functions in terms of higher order Bernoulli polynomials. These expansions naturally express many of the well-known properties of these functions. As corollaries many special values of these transcendental functions are expressed as series of higher order Bernoulli numbers.

Video

For a video summary of this paper, please click here or visit http://youtu.be/2i5PQiueW_8.  相似文献   

16.
We consider the Mellin convolution integral representation of the second Appell function given in [8]. Then, we apply the asymptotic method designed in [12] for this kind of integrals to derive new asymptotic expansions of the Appell function F 2 for one large variable in terms of hypergeometric functions. For certain values of the parameters, some of these expansions involve logarithmic terms in the asymptotic variables. The accuracy of the approximations is illustrated with numerical experiments.  相似文献   

17.
We study asymptotics of the recurrence coefficients of orthogonal polynomials associated to the generalized Jacobi weight, which is a weight function with a finite number of algebraic singularities on [−1,1]. The recurrence coefficients can be written in terms of the solution of the corresponding Riemann–Hilbert (RH) problem for orthogonal polynomials. Using the steepest descent method of Deift and Zhou, we analyze the RH problem, and obtain complete asymptotic expansions of the recurrence coefficients. We will determine explicitly the order 1/n terms in the expansions. A critical step in the analysis of the RH problem will be the local analysis around the algebraic singularities, for which we use Bessel functions of appropriate order. In addition, the RH approach gives us also strong asymptotics of the orthogonal polynomials near the algebraic singularities in terms of Bessel functions.  相似文献   

18.
Asymptotic expansions of the distributions of typical estimators in canonical correlation analysis under nonnormality are obtained. The expansions include the Edgeworth expansions up to order O(1/n) for the parameter estimators standardized by the population standard errors, and the corresponding expansion by Hall's method with variable transformation. The expansions for the Studentized estimators are also given using the Cornish-Fisher expansion and Hall's method. The parameter estimators are dealt with in the context of estimation for the covariance structure in canonical correlation analysis. The distributions of the associated statistics (the structure of the canonical variables, the scaled log likelihood ratio and Rozeboom's between-set correlation) are also expanded. The robustness of the normal-theory asymptotic variances of the sample canonical correlations and associated statistics are shown when a latent variable model holds. Simulations are performed to see the accuracy of the asymptotic results in finite samples.  相似文献   

19.
通过引入伸展变量和非常规的渐近序列{∈}),运用合成展开法,对一类具非线性边界条件的非线性高阶微分方程的奇摄动问题构造了形式渐近解,再运用微分不等式理论证明了原问题解的存在性及所得渐近近似式的一致有效性.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号