首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We use density functional theory to evaluate the stability of molybdenum disilicide coatings on a nickel substrate, as a possible bond coat alloy for high temperature coating applications. We consider the MoSi2(0 0 1)/Ni(1 1 1), MoSi2(1 0 0)/Ni(1 1 1), and MoSi2(1 1 0)/Ni(1 1 1) interfaces and predict quite strong (3.5-3.8 J/m2) adhesion of this metal-silicide ceramic to nickel. The origin of this strong adhesion is elucidated by examining the geometric and electronic structure of the interfaces. We predict that Mo and Si atoms at the interface primarily occupy Ni 3-fold hollow sites, the typical adsorption site on Ni(1 1 1). Projected local densities of states and electron density difference plots reveal a mixture of localized, covalent Si-Ni bonds and more delocalized metallic Mo-Ni bonding, as the origin of the strong interfacial bonding. As emphasized in our earlier work, creation of strong covalent bonds at interfaces results in very strong adhesion. Such strong adhesion makes MoSi2 a potential candidate for use in thermal barrier applications, in conjunction with a yttria-stabilized zirconia topcoat.  相似文献   

2.
Using first-principles plane-wave calculations within density functional theory, we theoretically studied the atomic structure, bonding energy and electronic properties of the perfect Mo (110)/MoSe2 (100) interface with a lattice mismatch less than 4.2%. Compared with the perfect structure, the interface is somewhat relaxed, and its atomic positions and bond lengths change slightly. The calculated interface bonding energy is about −1.2 J/m2, indicating that this interface is very stable. The MoSe2 layer on the interface has some interface states near the Fermi level, the interface states are mainly caused by Mo 4d orbitals, while the Se atom almost have no contribution. On the interface, Mo-5s and Se-4p orbitals hybridize at about −6.5 to −5.0 eV, and Mo-4d and Se-4p orbitals hybridize at about −5.0 to −1.0 eV. These hybridizations greatly improve the bonding ability of Mo and Se atom in the interface. By Bader charge analysis, we find electron redistribution near the interface which promotes the bonding of the Mo and MoSe2 layer.  相似文献   

3.
In the recent years, the heterojunction solar cells based on quantum dots (QDs) have attracted attention due to strong light absorbing characteristics and the size effect on the bandgap tuning. This paper reports on the kinetics of interfacial charge separation of PbS QDs/(001) TiO2 nanosheets heterojunction solar cells. PbS QDs are deposited using a bifunctional linker molecule on two different TiO2 films, i.e., TiO2 nanosheets (with 001 dominant exposed facet) and TiO2 nanoparticles (with 101 dominant exposed facet). Upon bandgap excitation, electrons are transferred from the PbS QDs conduction band to the lower lying conduction band of TiO2. Based on the ultrafast pump‐probe laser spectroscopy technique, the kinetics of charge separation is scrutinized at the PbS/TiO2 interface. The interfacial charge separation at PbS/TiO2 nanosheets films made of (001) dominant exposed facets is five times faster than that on (101) dominant exposed facets TiO2 nanoparticles. The quantum yields for charge injection are higher for the (001) TiO2 nanosheets than the (101) TiO2 nanoparticles due to enhanced interfacial interaction with (001) surface compared to the (101) nanoparticles. The superior interfacial charge separation at PbS/(001) nanosheets respect to PbS/(101) nanoparticles is consistent with the higher photocurrent and enhanced power conversion efficiency in the PbS QDs/(001) TiO2 heterojunction solar cell. The use of (001) TiO2 nanosheets can be a better alternative to conventional mesoporous TiO2 films in QD heterojunction solar cells and perovskites‐based heterojunction solar cells.  相似文献   

4.
The optimised adhesion geometry and the work of adhesion were determined for the interface systems Al(001)/MgAl2O4(001) and Ag(001)/MgAl2O4(001) by ab-initio density-functional calculations. Al is bound strongly on-top of oxygen at reduced lattice spacing, whereas weak adhesion and no unique optimum structure are obtained for Ag. An analysis of the electronic structure shows that in both systems the metal-ceramic interaction is spatially confined to a narrow range along the interface layers. The weak adhesion of Ag on spinel is mediated by a polarisation of the metal film, which may be classified as an image-charge interaction. In the case of Al a weak image-charge contribution is dominated by a strong electron-density redistribution perpendicular to the interface, which leads to the formation of directional Al—O bonds.  相似文献   

5.
The atomic and electronic structure of the interfaces between metals with body-centered cubic (bcc) and face-centered cubic (fcc) structures and zirconium dioxide is studied systematically using the ab initio methods of the electron density functional theory (DFT). It is shown that high adhesion properties can be attained at the nonstoichiometric polar Me(001)/ZrO2(001) interface with bcc metals from the middle of the 4d–5d periods (Mo, Ta, W, and Nb). Charge transfer from the metal to the oxide substrate ensures the strong ionic chemical bond on the metal-ceramic interfaces. The structural and electronic factors responsible for lowering of adhesion at differently oriented interfaces are analyzed. It is shown that a decrease of adhesion at the (110) nonpolar stoichiometric interface is due to an increase in the interfacial spacing as well as a decrease in the number of metal-oxygen bonds. The effect of doping with oxides (CaO, MgO, and Y2O3) stabilizing zirconium dioxide at low temperatures on the adhesion energy at the Me(001)/ZrO2(001) interface is analyzed.  相似文献   

6.
S. Tanaka  M. Kohyama 《哲学杂志》2013,93(25):2961-2976
The first-principles tensile tests have been applied to the Al-terminated stoichiometric α-Al2O3(0001)/Cu(111) interface by using the ab initio pseudo-potential method based on the density-functional theory. Firstly, the Cu/Al and Cu/Cu interlayers have been examined by the rigid-type tensile test. The interlayer potential curves derived from the first-principles calculations are well fitted by the universal binding-energy relation (UBER) curves. The Cu–Al adhesion is weaker than the back Cu–Cu adhesion. Secondly, the relaxed-type tensile test has revealed the tensile strength and features of interfacial fracture. The ideal tensile strength is about 10?GPa, and the local Young's modulus is about 40?GPa, which means that the Cu/Al interface is quite weak and soft compared with the bulk regions and the O-terminated interface. The failure is initiated from the charge depletion region near the interfacial O atoms when the interlayer stretching exceeds about 30%, and the behaviour of electrons and ions indicates no strong Cu–O bond compared with substantial Cu–Al interactions. The present ab initio data are useful for the construction of effective interatomic potentials at the interface.  相似文献   

7.
《Composite Interfaces》2013,20(7):605-621
The interfacial fracture toughness between semi-crystalline polymers (polyamide/polypropylene) were studied to understand the failure mechanisms at the interface, especially when the interface was reinforced by an in situ compatibilizer. Based on the observation of the interface using scanning electron microscopy and wide angle X-ray spectroscopy, it was revealed that crystalline structure of polypropylene was not affected by the in situ compatibilizer at the interface. The reinforcing mechanism could be qualitatively identified by investigating the evolution of fracture toughness as a function of annealing time and temperature. The adhesion strength increased with the annealing time. Depending on the annealing temperature, the fracture toughness passed a peak value and then reached a plateau after some bonding time. As long as the chain length of the compatibilizer is long enough to form entanglements with the molecules at both bulk sides, the fracture at the interface is decided by the balance between adhesion strength at the interface and cohesive strength in the weak modulus side; the failure locus follows the lower one. Thus, adhesive failure occurred first when the reaction at the interface did not occur long enough to provide high adhesive strength at the interface, but the cohesive failure occurred in the crack propagation side after the adhesive strength value became higher than the cohesive strength value.  相似文献   

8.
Employing first-principles density functional theory (DFT), the structures and electronic and mechanical properties of Al(111)/ZrB2(0001) heterojunctions are investigated. It is found that both B-terminated ZrB2(0001) and Zr-terminated ZrB2(0001) can form heterojunction interfaces with Al(111) surface. The heterojunction with B-terminated ZrB2(0001) is demonstrated to be most stable by comparing the surface adhesion energies of six different heterojunction models. In the stable configurations, the Al atom is found projecting to the hexagonal hollow site of neighbouring boron layer for the B-terminated ZrB2(001), and locating at the top site of the boron atoms for Zr-terminated ZrB2(001) interface. The mechanisms of interface interaction are investigated by density of states, charge density difference and band structure calculations. It is found that covalent bonds between surface Al atoms and B atoms are formed in the B-terminated heterojunction, whereas the Al atoms and Zr atoms are stabilised by interface metallic bonds for the Zr-terminated case. Mechanical properties of Al/ZrB2 heterojunctions are also predicted in the current work. The values of moduli of Al/ZrB2 heterojunctions are determined to be between those of single crystal Al and ZrB2, which exhibit the transition of mechanical strength between two bulk phases. DFT calculations with the current models provide the mechanical properties for each heterojunction and the corresponding contributions by each type of interface in the composite materials. This work paves the way for industrial applications of Al(111)/ZrB2(0001) heterojunctions.  相似文献   

9.
A methodology combining non-destructive X-ray techniques is proposed to study the interfacial zones of periodic multilayers. The used X-ray techniques are X-ray emission spectroscopy induced by electrons and X-ray reflectivity in the hard and soft X-ray ranges. The first technique evidences the presence of compounds at the interfaces and gives an estimation of the thickness of the interfacial zone. These informations are used to constrain the fit of the X-ray reflectivity curves that enables to determine the thickness and roughness of the various layers of the stacks. The results are validated in the soft X-ray range where the reflectivity curves are very sensitive to the chemical state of the elements present in the stack. The methodology is applied to characterize Mo/Si (1-4 nm/2 nm) and B4C/Mo/Si (1 nm/2 nm/2 nm) multilayers. It is shown that the two interfacial zones of the Mo/Si multilayers are composed of the silicides MoSi2 and Mo5Si3. It is found that the interface thickness is about to be 0.4-0.8 nm depending on the samples. The molybdenum silicides are also evidenced at the interfaces of the B4C/Mo/Si multilayers. However, their interface thickness is 0.2 nm thinner than that of the same stack without the B4C layers, these layers being at the Mo-on-Si side or at the Si-on-Mo side. Thus, the B4C layers do not stop but only reduce the interdiffusion between the Mo and Si layers.  相似文献   

10.
Bonding of gold clusters, , 16, and 20, on MgO(100) and on thin MgO films supported on Mo(100) is investigated using first-principles density-functional theory. Enhanced adhesive bonding is found for clusters deposited on metal-supported MgO films of thickness up to about 1 nm, or 4 to 5 MgO layers, originating from electrostatic interaction between the underlying metal and metal-induced excess electronic charge accumulated at the cluster interface with the oxide film. The increased wetting propensity is accompanied by a dimensionality crossover from three-dimensional optimal cluster geometries on MgO(100) to energetically favored two-dimensional structures on the metal-supported films.  相似文献   

11.
Adhesive energetics and interfacial electronic structures have been computed from first principles for the Cu/Al2O3 interface. Recent transmission electron microscopy results of Cu grown by molecular beam epitaxy on Al2O3(0001) were helpful in modelling the interfacial atomic structure. We found that Al2O3(0001) relaxation effects can lower the work of adhesion W ad by over a factor of 3. Our computed W ad value is in reasonably good agreement with experiment, being somewhat larger, as expected from our assumption of a coherent interface. One might begin to understand this metal/ceramic adhesion as a competition between Cu and Al for oxide formation, which is easily won by Al. However this simple picture is complicated by several indications of a significant metallic/covalent component to the Cu/Al2O3 adhesive bond.  相似文献   

12.
熊辉辉  刘昭  张恒华  周阳  俞园 《物理学报》2017,66(16):168101-168101
为了探索不同合金元素对Nb C异质形核的影响,本文利用第一性原理研究了合金元素X(X=Cr,Mn,Mo,W,Zr,V,Ti,Cu和Ni)对ferrite(100)/Nb C(100)界面性质的影响,并且分析了上述合金元素掺杂前后界面的黏附功、界面能和电子结构.研究结果表明,Cr,V和Ti掺杂的界面具有负的偏聚能,说明它们容易偏聚到ferrite/Nb C界面,但Mn,W,Mo,Zr,Cu和Ni却难以偏聚到此界面.当Mn,Zr,Cu和Ni取代界面处的Fe原子后,界面的黏附强度降低,即这些合金减弱铁素体在Nb C上的形核能力.然而Cr,W,Mo,V和Ti引入界面后,其黏附功比掺杂前的界面要大,且界面能均降低,即提高了界面的稳定性.因此,W,Mo,V和Ti,尤其是Cr,能够有效地促进铁素体形核和细化晶粒.电子结构分析表明,Zr和Cu引入界面后,界面处的Zr,Cu原子和C原子的相互作用变弱;然而Cr和W引入界面后,Cr,W和C原子之间形成了很强的非极性共价键,提高了ferrite/Nb C界面的结合强度.  相似文献   

13.
柳红霞  汤富领  薛红涛  张宇  程育汶  冯煜东 《中国物理 B》2016,25(12):123101-123101
Using the first-principles plane-wave calculations within density functional theory, the perfect bi-layer and monolayer terminated WZ-CIS(100)/WZ-Cd S(100) interfaces are investigated. After relaxation the atomic positions and the bond lengths change slightly on the two interfaces. The WZ-CIS/WZ-Cd S interfaces can exist stably, when the interface bonding energies are-0.481 J/m~2(bi-layer terminated interface) and-0.677 J/m~2(monolayer terminated interface). Via analysis of the density of states, difference charge density and Bader charges, no interface state is found near the Fermi level.The stronger adhesion of the monolayer terminated interface is attributed to more electron transformations and orbital hybridizations, promoting stable interfacial bonds between atoms than those on a bi-layer terminated interface.  相似文献   

14.
Using first-principles density functional theory, we investigate the interfacial electronic structure and magnetoelectric effect in M/BaTiO3 (M=Ni, Fe) superlattices, and find a novel type of interfacial magnetoelectric coupling mechanism in the Ni/BaTiO3 interface. This magnetoelectric effect is determined by the change of magnetic moments on Ni atoms near the interface, instead of the induced moments on interfacial Ti atoms in Fe/BaTiO3 system, which is also distinguished from the spin-polarized carriers screening mechanism. The underlying physics is the strong interface bonding and the pdσ-type magnetic interactions between Ni 3d and O 2p spins. Furthermore, there exists an extraordinary intralayer oscillation of magnetic moments within the Ni layers, which may be observed in experiments.  相似文献   

15.
《Composite Interfaces》2013,20(5):405-419
The purpose of present work is to investigate effects of fabricating temperature and ZrO2, SiC and NbSi2 addition on interfacial reaction layer and impact properties for Nb/MoSi2 laminate composites. Four types of laminate composites alternating four layers of Nb foil with each MoSi2, mixture layer containing ZrO2. SiC and NbSi2 particles were fabricated by hot pressing. The volume fraction of Nb foil involved in these system was nominally 10 vol%. It has been found that the impact value of Nb/MoSi2 laminate composites decreased at a fabricating temperature higher than 1523 K, since the thickness of reaction layer between Nb and MoSi2 increased along with fabricating temperature. However, the addition ofZrO2 particles to Nb/MoSi2 laminate composites fabricated at 1623 K resulted in a change of the interfacial microstructure as well as a reduction of the reaction layer. Nb/MoSi2-ZrO2 laminate composites maintained the same density as that of Nb/MoSi2 laminate composites fabricated at 1773 K and showed a higher impact value than that of Nb/MoSi2 laminate composites at 1523 K.  相似文献   

16.
We report a transmission electron microscope study of the morphology and interfacial structure of Aluminium grown on (001) GaAs by chemical beam epitaxy (CBE). The Al grows in islands for all thicknesses deposited, and exhibits four distinct orientation relationships with respect to the substrate. One of these orientation relationships becomes dominant as growth progresses, with (011)Al parallel to (001)GaAs. Misfit dislocations can be seen in the interface between this orientation and the substrate with Burgers vector 1/4(110)GaAs, and a crystallographic analysis shows that these dislocations are associated with interfacial steps of height 1/2[001]GaAs. In (001)Al on (001)GaAs, the existence of these dislocations has in the past been regarded as evidence for the existence of a rigid-body shift of the Al in the interfacial plane. Using cross-sectional high-resolution TEM, it is shown that this shift is not present in the (011) orientation. The similarity in the microstructure and crystallography of the (001) and (011) orientations leads us to suggest that there is also no shift in (001) Al on (001)GaAs. This is in conflict with previous investigations of this system using a wide variety of techniques.  相似文献   

17.
摘 要:金属钛原子在金刚石表面的结合强度直接影响金刚石真空介电窗口的使用性能和寿命. 本文通过基于密度泛函理论的第一性原理方法研究了Ti原子与不同氮掺杂位置的金刚石(001)界面的结合能、电荷分布和稳态几何结构. 结果表明:Ti原子与N原子取代掺杂在第二层C原子处金刚石表面的结合能比未掺杂和掺杂在第三层的结合能都高,达到-7.293 eV,使得金刚石表面形成的界面结构更加稳定,结合强度更好;通过电荷分布分析,N原子掺杂在第二层金刚石表面的Ti原子上的电荷转移最明显,对金刚石表面碳原子吸附最强,也具有更好的结合强度. 与未掺杂金刚石表面形成的Ti-C键键长相比,N掺杂在第二层和第三层C原子处金刚石表面形成的Ti-C键键长比前者分别长0.051 Å和0.042 Å,略有增加.  相似文献   

18.
We perform first-principles calculations to explore the possibility of tuning the two-dimensional electron gas at the LaAlO3/SrTiO3 (001) interface through BaTiO3 substrate. A metal-to-insulator transition is found at the interface as the polarization of BaTiO3 reverses. Through the potential analysis of the LaAlO3/SrTiO3/BaTiO3 superstructure, we find that the intrinsic electric field of LaAlO3 is significantly suppressed as the polarization points away from the LaAlO3/SrTiO3 interface, while it is enhanced with the polarization pointing to the interface. The ferroelectric field control of the intrinsic electric field, and therefore the electronic reconstructions at the interface, originating from the screening of polarization charges, opens the way to the development of novel nanoscale electronic devices.  相似文献   

19.
As an aid to understanding the superior toughness of Ti-modified steels provided by fine Ti(C,?N) particles, first-principles full-potential linearized augmented plane wave (FLAPW) density functional calculations were performed on the Fe matrix/TiC particle interface. It was found that at equilibrium a strong covalent bonding between Fe–C is formed at the interface, and the magnetic moment of the interface Fe (1.98?μ B ) is reduced from that of the tetragonally strained structure (2.51?μB). We then calculated with a rigid separation model the separation energy curve and the force separation law for the Fe–C debonding process at the interface, which predicts 2.45?J?m?2 for the work of separation and 30.66 [GPa] for the force maximum. We also found that the strong Fe–C bond provides an interfacial fracture strength equal to that of the pure bcc Fe matrix. A clear picture is given for the microscopic origin of this strong metal/ceramic adhesion based on density of states (DOS) considerations. For a more realistic understanding of the Fe–C bonding, structural optimization calculations were performed at each separation distance. The effect of relaxation was found to be larger at short separation distances than in the large separation region, which leads to a crossover behavior in the separation energy curve from the elastically deformed to the clearly separated regime at a critical distance (~1.75?Å), and to a discontinuity in the force separation law. Despite this large relaxation effect, the work of separation, 2.52?J?m?2, is not changed much from that of rigid separation.  相似文献   

20.
It is experimentally shown that, by terminating dangling bonds on Si(001) with a monatomic layer of selenium, the chemical reactivity of the surface is suppressed. In the case of nickel silicidation, transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy reveal that Se passivation suppresses Ni silicidation by over 100 °C as compared to the bare Si(001) surface. The formation of Ni subsilicide (Ni2Si) is not observed on Se-passivated Si(001). This interfacial silicidation appears to be linked with changes in electrical behavior of the interface between titanium and Se-passivated Si(001), which we reported previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号