首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
A minimal triangulation of a graph is a chordal supergraph with an inclusion-minimal edge set. Minimal triangulations are obtained from adding edges only to minimal separators, completing minimal separators into cliques. Permutation graphs are the comparability graphs whose complements are also comparability graphs. Permutation graphs can be characterised as the intersection graphs of specially arranged line segments in the plane, which is called a permutation diagram. The minimal triangulations of permutation graphs are known to be interval graphs, and they can be obtained from permutation diagrams by applying a geometric operation, that corresponds to the completion of separators into cliques. We precisely specify this geometric completion process to obtain minimal triangulations, and we completely characterise those interval graphs that are minimal triangulations of permutation graphs.  相似文献   

2.
We study subclasses of grid intersection graphs from the perspective of order dimension. We show that partial orders of height two whose comparability graph is a grid intersection graph have order dimension at most four. Starting from this observation we provide a comprehensive study of classes of graphs between grid intersection graphs and bipartite permutation graphs and the containment relation on these classes. Order dimension plays a role in many arguments.  相似文献   

3.
Ma and Spinrad have shown that every transitive orientation of a chordal comparability graph is the intersection of four linear orders. That is, chordal comparability graphs are comparability graphs of posets of dimension four. Among other uses, this gives an implicit representation of a chordal comparability graph using O(n) integers so that, given two vertices, it can be determined in O(1) time whether they are adjacent, no matter how dense the graph is. We give a linear time algorithm for finding the four linear orders, improving on their bound of O(n2).  相似文献   

4.
A transitive decomposition of a graph is a partition of the edge or arc set giving a set of subgraphs which are preserved and permuted transitively by a group of automorphisms of the graph. This paper deals with transitive decompositions of complete multipartite graphs preserved by an imprimitive rank 3 permutation group. We obtain a near-complete classification of these when the group in question has an almost simple component.  相似文献   

5.
We discuss several results concerning on-line algorithms for ordered sets and comparability graphs. The main new result is on the problem of on-line transitive orientation. We view on-line transitive orientation of a comparability graph G as a two-person game. In the ith round of play, 1 i | V(G)|, player A names a graph Gi such that Gi is isomorphic to a subgraph of G, |V(Gi)| = i, and Gi−1 is an induced subgraph of Gi if i> 1. Player B must respond with a transitive orientation of Gi which extends the transitive orientation given to Gi−1 in the previous round of play. Player A wins if and only if player B fails to give a transitive orientation to Gi for some i, 1 i |V(G)|. Our main result shows that player A has at most three winning moves. We also discuss applications to on-line clique covering of comparability graphs, and we mention some open problems.  相似文献   

6.
We give a unified approach to analyzing, for each positive integer s, a class of finite connected graphs that contains all the distance transitive graphs as well as the locally s‐arc transitive graphs of diameter at least s. A graph is in the class if it is connected and if, for each vertex v, the subgroup of automorphisms fixing v acts transitively on the set of vertices at distance i from v, for each i from 1 to s. We prove that this class is closed under forming normal quotients. Several graphs in the class are designated as degenerate, and a nondegenerate graph in the class is called basic if all its nontrivial normal quotients are degenerate. We prove that, for s≥2, a nondegenerate, nonbasic graph in the class is either a complete multipartite graph or a normal cover of a basic graph. We prove further that, apart from the complete bipartite graphs, each basic graph admits a faithful quasiprimitive action on each of its (1 or 2) vertex‐orbits or a biquasiprimitive action. These results invite detailed additional analysis of the basic graphs using the theory of quasiprimitive permutation groups. © 2011 Wiley Periodicals, Inc. J Graph Theory 69:176‐197, 2012  相似文献   

7.
We study the class of the distance-hereditary comparability graphs, that is, those graphs which admit a transitive orientation and are completely decomposable with respect to the split decomposition. We provide a characterization in terms of forbidden subgraphs. We also provide further characterizations and one of them, based on the split decomposition, is used to devise a recognizing algorithm working in linear time. Finally, we show how to build distance-hereditary comparability graphs.  相似文献   

8.
In this paper, we first consider graphs allowing symmetry groups which act transitively on edges but not on darts (directed edges). We see that there are two ways in which this can happen and we introduce the terms bi‐transitive and semi‐transitive to describe them. We examine the elementary implications of each condition and consider families of examples; primary among these are the semi‐transitive spider‐graphs PS(k,N;r) and MPS(k,N;r). We show how a product operation can be used to produce larger graphs of each type from smaller ones. We introduce the alternet of a directed graph. This links the two conditions, for each alternet of a semi‐transitive graph (if it has more than one) is a bi‐transitive graph. We show how the alternets can be used to understand the structure of a semi‐transitive graph, and that the action of the group on the set of alternets can be an interesting structure in its own right. We use alternets to define the attachment number of the graph, and the important special cases of tightly attached and loosely attached graphs. In the case of tightly attached graphs, we show an addressing scheme to describe the graph with coordinates. Finally, we use the addressing scheme to complete the classification of tightly attached semi‐transitive graphs of degree 4 begun by Marus?ic? and Praeger. This classification shows that nearly all such graphs are spider‐graphs. © 2003 Wiley Periodicals, Inc. J Graph Theory 45: 1–27, 2004  相似文献   

9.
A simple graph is reflexive if its second largest eigenvalue does not exceed 2. A graph is treelike (sometimes also called a cactus) if all its cycles (circuits) are mutually edge-disjoint. In a lot of cases one can establish whether a given graph is reflexive by identifying and removing a single cut-vertex (Theorem 1). In this paper we prove that, if this theorem cannot be applied to a connected treelike reflexive graph G and if all its cycles do not have a common vertex (do not form a bundle), such a graph has at most five cycles (Theorem 2). On the same conditions, in Theorem 3 we find all maximal treelike reflexive graphs with four and five cycles.  相似文献   

10.
This paper studies a number of problems on cycle-free partial orders and chordal comparability graphs. The dimension of a cycle-free partial order is shown to be at most 4. A linear time algorithm is presented for determining whether a chordal directed graph is transitive, which yields an O(n 2) algorithm for recognizing chordal comparability graphs. An algorithm is presented for determining whether the transitive closure of a digraph is a cycle-free partial order in O(n+m t)time, where m tis the number of edges in the transitive closure.  相似文献   

11.
Trapezoid graphs are the intersection family of trapezoids where every trapezoid has a pair of opposite sides lying on two parallel lines. These graphs have received considerable attention and lie strictly between permutation graphs (where the trapezoids are lines) and cocomparability graphs (the complement has a transitive orientation). The operation of “vertex splitting”, introduced in (Cheah and Corneil, 1996) [3], first augments a given graph G and then transforms the augmented graph by replacing each of the original graph’s vertices by a pair of new vertices. This “splitted graph” is a permutation graph with special properties if and only if G is a trapezoid graph. Recently vertex splitting has been used to show that the recognition problems for both tolerance and bounded tolerance graphs is NP-complete (Mertzios et al., 2010) [11]. Unfortunately, the vertex splitting trapezoid graph recognition algorithm presented in (Cheah and Corneil, 1996) [3] is not correct. In this paper, we present a new way of augmenting the given graph and using vertex splitting such that the resulting algorithm is simpler and faster than the one reported in (Cheah and Corneil, 1996) [3].  相似文献   

12.
A graph G is said to be super-connected if any minimum cut of G isolates a vertex. In a previous work due to the second author of this note, super-connected graphs which are both vertex transitive and edge transitive are characterized. In this note, we generalize the characterization to edge transitive graphs which are not necessarily vertex transitive, showing that the only irreducible edge transitive graphs which are not super-connected are the cycles Cn(n?6) and the line graph of the 3-cube, where irreducible means the graph has no vertices with the same neighbor set. Furthermore, we give some sufficient conditions for reducible edge transitive graphs to be super-connected.  相似文献   

13.
We consider the class of the topologically locally finite (in short TLF) planar vertex-transitive graphs. We characterize these graphs by finite combinatorial objects called labeling schemes. As a result, we are able to enumerate and describe all TLF-planar vertex-transitive graphs of given degree, as well as most of their transitive groups of automorphisms. In addition,we are able to decide whether a given TLF-planar transitive graph is Cayley or not. This class contains all the one-ended planar Cayley graphs and the normal transitive tilings of the plane.  相似文献   

14.
15.
A transitive orientation of an undirected graph is an assignment of directions to its edges so that these directed edges represent a transitive relation between the vertices of the graph. Not every graph has a transitive orientation, but every graph can be turned into a graph that has a transitive orientation, by adding edges. We study the problem of adding an inclusion minimal set of edges to an arbitrary graph so that the resulting graph is transitively orientable. We show that this problem can be solved in polynomial time, and we give a surprisingly simple algorithm for it. We use a vertex incremental approach in this algorithm, and we also give a more general result that describes graph classes Π for which Π completion of arbitrary graphs can be achieved through such a vertex incremental approach.  相似文献   

16.
We determine all permutation graphs of order ?9. We prove that every bipartite graph of order ?50 is a permutation graph. We convert the conjecture stating that “every tree is a permutation graph” to be “every bipartite graph is a permutation graph”.  相似文献   

17.
A graph of order n is p ‐factor‐critical, where p is an integer of the same parity as n, if the removal of any set of p vertices results in a graph with a perfect matching. 1‐factor‐critical graphs and 2‐factor‐critical graphs are factor‐critical graphs and bicritical graphs, respectively. It is well known that every connected vertex‐transitive graph of odd order is factor‐critical and every connected nonbipartite vertex‐transitive graph of even order is bicritical. In this article, we show that a simple connected vertex‐transitive graph of odd order at least five is 3‐factor‐critical if and only if it is not a cycle.  相似文献   

18.
The class of graphs that are 2‐path‐transitive but not 2‐arc‐transitive is investigated. The amalgams for such graphs are determined, and structural information regarding the full automorphism groups is given. It is then proved that a graph is 2‐path‐transitive but not 2‐arc‐transitive if and only if its line graph is half‐arc‐transitive, thus providing a method for constructing new families of half‐arc‐transitive graphs. © 2012 Wiley Periodicals, Inc. J. Graph Theory 73: 225–237, 2013  相似文献   

19.
Polar graphs generalise bipartite graphs, cobipartite graphs, and split graphs, and they constitute a special type of matrix partitions. A graph is polar if its vertex set can be partitioned into two, such that one part induces a complete multipartite graph and the other part induces a disjoint union of complete graphs. Deciding whether a given arbitrary graph is polar, is an NPNP-complete problem. Here, we show that for permutation graphs this problem can be solved in polynomial time. The result is surprising, as related problems like achromatic number and cochromatic number are NPNP-complete on permutation graphs. We give a polynomial-time algorithm for recognising graphs that are both permutation and polar. Prior to our result, polarity has been resolved only for chordal graphs and cographs.  相似文献   

20.
A coloring of a graph G is an assignment of colors to its vertices so that no two adjacent vertices have the same color. We study the problem of coloring permutation graphs using certain properties of the lattice representation of a permutation and relationships between permutations, directed acyclic graphs and rooted trees having specific key properties. We propose an efficient parallel algorithm which colors an n-node permutation graph in O(log2 n) time using O(n2/log n) processors on the CREW PRAM model. Specifically, given a permutation π we construct a tree T*[π], which we call coloring-permutation tree, using certain combinatorial properties of π. We show that the problem of coloring a permutation graph is equivalent to finding vertex levels in the coloring-permutation tree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号