首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes   总被引:4,自引:0,他引:4  
In this study, barrier membranes were prepared from poly(vinyl alcohol) (PVOH) with different amounts of cellulose nanocrystals (CNXLs) as filler. Poly(acrylic acid) (PAA) was used as a crosslinking agent to provide water resistance to PVOH. The membranes were heat treated at various temperatures to optimize the crosslinking density. Heat treatment at 170 °C for 45 min resulted in membranes with improved water resistance without polymer degradation. Infrared spectroscopy indicated ester bond formation with heat treatment. Mechanical tests showed that membranes with 10% CNXLs/10% PAA/80% PVOH were synergistic and had the highest tensile strength, tensile modulus and toughness of all the membranes studied. Polarized optical microscopy showed agglomeration of CNXLs at filler loadings greater than 10%. Differential thermogravimetric analysis (DTGA) showed a highly synergistic effect with 10% CNXL/10% PAA/80% PVOH and supported the tensile test results.Transport properties were studied, including water vapor transport rate and the transport of trichloroethylene, a representative industrial toxic material. Water vapor transmission indicated that all the membranes allowed moisture to pass. However, moisture transport was reduced by the presence of both CNXLs and PAA crosslinking agent. A standard time lag diffusion test utilizing permeation cups was used to study the chemical barrier properties. The membranes containing ≥10% CNXLs or PAA showed significantly reduced flux compared to the control. The CNXLs were then modified by surface carboxylation in order to better understand the mechanism of transport reduction. While barrier performance improvements were minimal, the chemical modification improved the dispersion of the modified CNXLs which led to improved performance. Of special note was an increase in the initial degradation temperatures of both modified and unmodified systems, with the modified system showing an initial degradation temperature >100 °C higher than the cellulose alone. This may reflect more extensive crosslinking in the modified composite.  相似文献   

2.
Ceramic hollow fibre membranes which have an asymmetric structure have been prepared in one step, using an immersion induced phase inversion technique. With this method, membranes with a high surface area per unit volume ratio can be produced, while production cost is dramatically reduced. Yttria-stabilised zirconia (YSZ) is selected as a membrane material, as it is relatively inexpensive and has superior mechanical strength as well as oxygen ion conducting properties. Therefore, both the porous and non-porous membranes prepared from the YSZ have potential applications. For example, the porous YSZ membranes can be used for fluid separations in harsh environments where normal polymeric membranes cannot be sustained, while the non-porous YSZ membranes can be applied as a solid electrolyte in electrochemical devices such as solid oxide fuel cells, oxygen pumps and chemical gas sensors.Gas permeation analysis suggests that non-porous YSZ hollow fibre membranes can be prepared at sintering temperature of 1400 °C or greater, below which the membrane contains pores. Pore sizes of the YSZ porous membrane prepared fall into the pore size range of ultrafiltration membranes. However, the surface porosities of the membranes prepared from two-population sized particles at sintering temperatures of 1200 °C and 1400 °C are around 5000 m−1 and 300 m−1, respectively. The former is comparable to polymeric membranes, while the latter is an order of the magnitude smaller.  相似文献   

3.
Temperature-sensitive hydrophilic gel microcapsules have been newly prepared. That is, poly ( -lysineisopropylamide–terephthalic acid) microcapsules containing water have been obtained by an interfacial polymerization at a water/oil interface between -lysineisopropylamide and terephthaloyldichloride. The microcapsule changes its size between 33 and 35°C. Under 33°C, the microcapsules are fully spherical and can be redispersed in distilled water, while are aggregated above 35°C. The microcapsules, which are observed to show aggregation above 33°C, can be redispersed by decreasing temperature within a few second. The thermosensitive morphological changes of the microcapsules are thus reversible. Also, it has been shown that the permeability of sodium chloride through the microcapsule membrane changes remarkably between 33 and 35°C, while it is kept almost constant independent of temperature between 25 and 33°C or between 35 and 55°C. The permeability of solutes is higher under 33°C than that above 35°C. Such thermosensitive properties result from the fact that the polymer membrane has isopropylamide groups. That is, -lysineisopropylamide has a chemical structure similar to N-isopropylacrylamide, the polymer of which, poly (N-isopropylacrylamide), is a thermosensitive hydrogel having its phase transition temperature around 33°C.  相似文献   

4.
Transparent and stable Poly(vinyl alcohol) hydrogels were synthesized from polymer aqueous solution without resorting to a mixed solvent such as dimethyl sulfoxide and water. Contrary to the reported methods involving hydrogen bond induced physical crosslinking by repeated freeze–thawing at −20 °C, the present process demonstrates the gelation taking place at relatively higher temperature, i.e. 0 °C. While maintaining transparency in all the synthesized hydrogels, the present paper reports systematic structural and morphological variations in the hydrogels as a function of polymer concentration.  相似文献   

5.
Dynamic infrared linear dichroism (DIRLD) spectroscopy is a rheo-optical characterization technique developed specifically to probe the submolecular dynamics of polymer segments. The technique combines the measurement of submolecular orientation based on the directionally selective absorption of polarized IR light with a small-amplitude oscillatory tensile deformation used in dynamic mechanical analysis. A DIRLD spectroscopic study of atactic polystyrene reveals that a dramatic change in the reorientation behavior of aromatic side groups is observed around the glass transition temperature of 100 °C. The transition point for the main chain backbone, on the other hand, is observed at a much higher temperature around 125 °C. Thus, the macroscopically observable glass transition of polystyrene seems to be dominated by the dynamics of side groups rather than that of the coordinated motions of polymer segments along the backbone. This result suggests a fundamental similarity between the glass transition phenomena of polymers and those of small-molecule inorganic glasses.  相似文献   

6.
A simple copolymer, poly(NIPAM-co-RD), consisting of N-isopropylacrylamide (NIPAM) and rhodamine (RD) units, behaves as a fluorescent temperature sensor exhibiting selective fluorescence enhancement at a specific temperature range (25–40 °C) in water. This is driven by a heat-induced phase transition of the polymer from coil to globule. At low temperature, the polymer exists as a polar coil state and shows very weak fluorescence. At >25 °C, the polymer weakly aggregates and forms a less polar domain within the polymer, leading to fluorescence enhancement. However, at >33 °C, strong polymer aggregation leads to a formation of huge polymer particles, which suppresses the incident light absorption by the RD units and shows very weak fluorescence. In the present work, effects of polymer concentration and type of acrylamide unit in the polymer have been investigated. The increase in the polymer concentration in water leads to a formation of less polar domain even at low temperature and, hence, widens the detectable temperature range to lower temperature. Addition of N-n-propylacrylamide (NNPAM) or N-isopropylmethacrylamide (NIPMAM) component to the polymer, which has lower or higher phase transition temperature than that of NIPAM, enables the aggregation temperature of the polymer to shift. This then shifts the detectable temperature region to lower or higher temperature.  相似文献   

7.
A method for organic, inorganic and total mercury determination in fish tissue has been developed using chemical vapor generation and collection of mercury vapor on a gold gauze inside a graphite tube and further atomization by electrothermal atomic absorption spectrometry. After drying and cryogenic grinding, potassium bromide and hydrochloric acid solution (1 mol L− 1 KBr in 6 mol L− 1 HCl) was added to the samples. After centrifugation, total mercury was determined in the supernatant. Organomercury compounds were selectively extracted from KBr solution using chloroform and the resultant solution was back extracted with 1% m/v L-cysteine. This solution was used for organic Hg determination. Inorganic Hg remaining in KBr solution was directly determined by chemical vapor generation electrothermal atomic absorption spectrometry. Mercury vapor generation from extracts was performed using 1 mol L− 1 HCl and 2.5% m/v NaBH4 solutions and a batch chemical vapor generation system. Mercury vapor was collected on the gold gauze heated resistively at 80 °C and the atomization temperature was set at 650 °C. The selectivity of extraction was evaluated using liquid chromatography coupled to chemical vapor generation and determination by inductively coupled plasma mass spectrometry. The proposed method was applied for mercury analysis in shark, croaker and tuna fish tissues. Certified reference materials were used to check accuracy and the agreement was better than 95%. The characteristic mass was 60 pg and method limits of detection were 5, 1 and 1 ng g− 1 for organic, inorganic and total mercury, respectively. With the proposed method it was possible to analyze up to 2, 2 and 6 samples per hour for organic, inorganic and total Hg determination, respectively.  相似文献   

8.
The hybrid copper–chlorine (Cu–Cl) thermo/electrochemical cycle for decomposing water into its constituents is a novel method for hydrogen production. The process involves a series of closed-loop chemical reactions. The cycle is assumed driven in an environmentally benign manner using nuclear energy. The cycle involves five steps of which three are thermally driven chemical reactions and one has an electrochemical reaction. In the present study, the electrochemical reaction, copper (Cu) production step, is described with its operational and environmental conditions, and analyzed thermodynamically. Various parametric studies are carried out on energetic and exergetic aspects of the step, considering variable reaction and reference-environment temperatures. At a reaction temperature of 45 °C, the reaction heat of the Cu production step is 140,450 kJ/kmol H2. At a constant reaction temperature of 45 °C, the exergy destruction of the step varies between 50 kJ/kmol H2 and 7000 kJ/kmol H2 when the reference-environment temperature increases from 0 °C to 30 °C. At a reaction temperature of 45 °C and a reference-environment temperature of 25 °C, the exergy efficiency of this step is 99% and decreases with increasing reference-environment and/or reaction temperatures.  相似文献   

9.
Gas sensors are demanded in many different application fields. Especially the ever-growing field of batteries creates a great need for early hazard detection by gas sensors. Metal oxides are well known for gas sensing; however, moisture continues to be a major problem for the sensors, especially for the application in battery systems. This study reports on a new type of moisture protected gas sensor, which is capable to solve this problem. Sensitive nano-materials of CuO/Cu2O/ZnO:Fe heterostructures are grown and subsequently coated with an ultrathin hydrophobic cyclosiloxane-polymer film via initiated chemical vapor deposition to protect the sensor from moisture. The monomer 1,3,5-trimethyl-1,3,5-trivinylcyclotrisiloxane is combined with the initiator perfluorobutanesulfonyl fluoride to obtain hydrophobic properties. Surface chemistry, film formation and preservation of functional groups are confirmed by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. It turns out that the hydrophobicity is retained even after annealing at 400 °C, which is ideal for gas sensing. Molecular distances in the polymer nanolayer are estimated by geometry optimization via MMFF94 followed by density functional theory. Compared with unprotected CuO/Cu2O/ZnO:Fe, the coated CuO/Cu2O/ZnO:Fe exhibit a much better sensing performance at a higher relative humidity, as well as tunability of the gas selectivity. This is highly beneficial for hazard detection in case of thermal runaway in batteries because the sensors can be used under high concentrations of relative humidity, which is ideal for Li–S battery applications.  相似文献   

10.
The influences of various salts and water-soluble polymers on the phase transition temperature of thermo-setting gels prepared by combining methylcellulose (MC)–sodium citrate (SC)–polyethylene glycol (PEG) at appropriate ratios (the MC–SC–PEG system) were investigated. Concerning cations, comparison of the phase transition temperature between SC and tripotassium citrate (PC) showed a rapid increase in the viscosity of SC between 20 °C and 25 °C and an increase in the viscosity of PC between 30 °C and 35 °C. Concerning the valency of anions, comparisons among SC, disodium tartrate dihydrate (ST), disodium maleate hemihydrates (SM), and sodium sulfate (SS) showed a rapid increase in the viscosity of trivalent SC between 20 °C and 25 °C and changes in the viscosity of the three bivalent sodium salts (ST, SM, and SS) at ≥30 °C. Thus the phase transition temperature decreased with an increase in the valency of anions.Subsequently, the influences of various water-soluble polymers on the gelling temperature were compared. Using polyvinylpyrrolidone (PVP) instead of PEG, the gelling temperature decreased with an increase in the PVP concentration even without the addition of SC. Unlike PVP, the addition of xanthan gum as a viscosity-increasing polysaccharide did not reduce the gelling temperature irrespective of its concentration.Temperature-associated changes in viscosity were observed at a fixed SC concentration with changes in the concentration of PVP or PEG. The gel phase transition temperature increased from 46 °C to 50 °C in gels not containing PVP or PEG. The viscosity did not differ between the addition of PVP or PEG at a low concentration and its absence. However, the viscosity clearly changed after the addition of each agent at a high concentration.  相似文献   

11.
A method for the multi-elemental determination of As, Ge, Hg, Pb, Sb, Se and Sn in coal reference materials by slurry sampling chemical vapor generation (CVG) using external calibration and isotopic dilution (ID) calibration and detection by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) is proposed. As, Ge, Sb, Se and Sn were determined using the external calibration, while, Hg, Pb, Se and Sn were determined by isotopic dilution. About 50–250 mg of sample was mixed with an acid solution, containing aqua regia and HCl, in an ultrasonic bath. For the isotopic dilution calibration, the enriched isotopes 201Hg, 206Pb, 77Se and 119Sn were added to the slurry in an adequate amount in order to produce an altered isotopic ratio close to 1. The vapor produced by the reaction of the sample slurry with the reducing agent was transported to the vaporizer and trapped in a Ir-treated graphite tube at 200 °C, before vaporization at 2100 °C and transportation of the vapor to the plasma. The accuracy of the method was assured by the analysis of four certified reference coal samples, using external calibration with aqueous solutions, prepared in the same medium and subjected to the same CVG and trapping procedure as the slurries and also by isotopic dilution calibration. The obtained concentrations were in agreement with the certified values, using the t-Student test for a confidence level of 95%. The detection limits (3 s; n = 5) of isotopic dilution, in ng g− 1, were: 0.4 for Hg, 900 for Pb, 0.3 for Se and 0.2 for Sn. For external calibration, the detection limits, in ng g− 1, were: 1.6 for As, 0.1 for Ge, 0.3 for Sb, 0.9 for Se and 7.5 for Sn. The relative standard deviations generally were lower than 14%, adequate for slurry analysis.  相似文献   

12.
The influences of temperature on xanthan biopolymer assemblies on a two-dimensional surface have been thoroughly studied. High resolution atomic force microscope images show that the xanthan nanofibrils can be used to build up well-dispersed 2D scaffold layer after 1 day annealing at 35 °C. By increasing annealing temperatures (60 °C, 90 °C) of xanthan solutions, the well-dispersed layers can be produced rapidly (6 h, 0.5 h) with micro-sized pore structures. The xanthan scaffold with pore structures potentially allows accommodating micro-sized cells for tissue engineering.  相似文献   

13.
Novel multifunctional polyazomethines containing triphenylamine structure in the main chain have been prepared via polycondensation of 4,4′-diformyltriphenylamine with aromatic diamines, which were characterized by elemental analysis, 1H NMR, TG, DSC, and XRD techniques. The polymers with the decomposition temperatures of about 450 °C were heat resistant and amorphous. The UV–visible and PL spectra of polyazomethines were dependent on the diamines structures. The polyazomethines emit blue–green light at about 470 nm in pristine state and emit reddish orange at about 590 nm due to being doped with electrooxidation, acid or UV irradiation, respectively. The doped polyazomethines can go back pristine state under NH3 vapor. The results suggest that the polyazomethines can be used as molecular switches, sensors or emitting dyes. The morphologies were investigated by AFM to be different appearance due to the natural structures of macromolecules and the convolution of self-assemblies during vaporization of solvent.  相似文献   

14.
The effect of reaction conditions on product distribution from the co-pyrolysis of amino acids with glucose was studied. Three different amino acids, proline, tryptophan and asparagine, were studied. Some experiments were also conducted with aspartic acid, glutamic acid and glutamine. Equimolar binary mixtures of each amino acid and glucose were pyrolyzed at 300 °C to obtain low temperature char (LTC) and low temperature tar (LTT). The LTC in each case was then pyrolyzed further at 625 °C to obtain high temperature char (HTC) and high temperature tar (HTT). In a few experiments, the LTT and HTT were also pyrolyzed at 870 °C (secondary cracking) to obtain the final tars (LTFT and HTFT, respectively) and study the formation of polycyclic aromatic compounds (PACs) via secondary reactions. Experiments were also conducted at different amino acid/glucose molar ratio or at a temperature of 200 °C. All the experiments were performed in an inert atmosphere. The extent of interaction between the amino acids and glucose was determined by comparing the observed results to that calculated from the separate pyrolyses of amino acids and glucose. At 200 °C, the co-pyrolysis led to lower LTC yields relative to the calculated yields. At 300 and 625 °C the yields of LTC and HTC were mostly higher whereas those of LTT and HTT were lower than the calculated yields, except for asparagine and aspartic acid where the observed and calculated LTC yields were comparable. Although proline formed no char in the absence of glucose, it gave a significant amount of nitrogen-containing char when co-pyrolyzed with glucose. The pyrolysis tars contained a number of nitrogenous products not observed from the pyrolysis of amino acids alone. After the secondary cracking, the product changed from mainly single-ring heterocycles to PACs and, in some cases, PAHs.  相似文献   

15.
The thermal decomposition process and pyrolysis products of poly(vinyl phenyl ketone) (PVPK) were investigated by thermogravimetric analysis (TGA) and on-line pyrolysis-gas chromatography–mass spectrometry (Py-GC–MS). TGA showed a largest weight loss rate around 380 °C. Py-GC–MS was used for the qualitative analysis of the pyrolysis products at 350, 500, 600, 700 and 850 °C. The major volatile thermal decomposition product was found to be 1-phenyl-2-propenone, which dominated all other volatile species especially under the least severe pyrolysis conditions (<600 °C). At higher temperatures a much wider range of pyrolysis products was obtained. The results have been interpreted assuming that primary random chain scission reactions occur followed by typical unzipping mainly producing monomer units; detachment of the side-group occurs only under more severe pyrolysis conditions. Py-GC–MS showed to be effective in PVPK detection in ink and paint formulations.  相似文献   

16.
The flat sheet polyethersulfone (PES) and poly(vinylidene fluoride) (PVDF) membranes were prepared by immersion precipitation technique. The influence of hot air and water treatment on morphology and performance of membranes were investigated. The membranes were characterized by AFM, SEM, cross-flow filtration of milk and fouling analysis. The PES membrane turns to a denser structure with thick skin layer by air treatment at various temperatures during different times. This diminishes the pure water flux (PWF). However the milk permeation flux (MPF) was considerably improved at 100 °C air treatment for 20 min with no change in protein rejection. The smooth surface and slight decrease in surface pore size for air treated PES membrane at 100 °C compared to untreated membrane may cause this behavior for the membrane. The water treatment of PES membranes at 55 and 75 °C declines the PWF and MPF and increases the protein rejection. This is due to slight decrease in membrane surface pore size. The treatment of PES membrane with water at higher temperature results in a porous structure with superior performance. The fouling analysis of 20 min treated membrane indicates that the surface properties of 100 °C air treated and 95 °C water treated PES membranes are improved compared to untreated membrane. The SEM observation depicts that the morphology of air and water treated PVDF membranes was denser and smoother with increasing the heat treatment temperature. The 20 min air treated PVDF membranes at 100 °C and water treated at 95 °C exhibited the highest performance and antifouling properties.  相似文献   

17.
A direct ethanol fuel cell (DEFC) is developed with low catalyst loading at anode and cathode compared to that reported in the literature. Pt/Ru (40%:20% by wt.)/C and Pt-black were used as anode and cathode catalyst with loadings in the range of 0.5–1.2 mg/cm2. The temperatures of anode and cathode were varied from 34 °C to 110 °C, and the pressure was maintained at 1 bar. Although low catalyst loading was used, the cell performance is enhanced by 40–50% with the use of low concentration of sulfuric acid in ethanol and Ni-mesh as current collector at the anode. The power density 15 mW/cm2 at 32 mA/cm2 of current density is obtained from the single cell with 0.5 mg/cm2 loading of Pt–Ru/C at anode (90 °C) and Pt-black at cathode (110 °C). The performance of DEFC increases with the increase in ethanol and sulfuric acid concentrations, electrocatalyst loadings up to 1 mg cm−2 at anode and cathode. However, the performance of DEFC decreases with further increase in electrocatalyst loading.  相似文献   

18.
Polysiloxane-modified hybrid Nafion membranes were prepared by casting a mixture of Nafion solution and a precursor of acid functionalised polysiloxane based on tetraethoxysilane and a mercaptan-organoalkoxysilane.Scanning Electron Microscopy (SEM) and Atomic Force Microscopy analysis revealed that the functionalised polysiloxane was dispersed either as finely nanosized inclusions or as coarse domains depending on the rate of the solvent evaporation during the casting procedure. In particular the slower is the rate of solvent evaporation the more interpenetrated and homogenously dispersed at nanosized level is the polysiloxane inside the Nafion membrane.The hybridization process increases the thermal stability of the membranes of about 50 °C relatively to the unmodified Nafion. Small angle X-ray scattering (SAXS) analysis reveals that the hybrid membranes exhibited the typical morphology of Nafion consisting of distinct hydrophilic and hydrophobic domains.Water vapor sorption and proton conductivity were measured varying the temperature (up to 120 °C) and the water activity conditions (from 0.1 to 0.8). The polysiloxane network always increases the water vapor uptake of the membranes and increases significantly the proton conductivity at higher temperature depending on the type of morphology developed by the manufacturing method. In particular hybrid membranes exhibiting nanosized polysiloxane dispersion show a proton conductivity which is up to one-and-half time higher than Nafion recast membrane at high temperature and low water content.  相似文献   

19.
A compact and low-power microcantilever-based sensor array has been developed and used to detect various chemical vapor analytes. In contrast to earlier micro-electro-mechanical systems (MEMS) array sensors, this device uses the static deflection of piezoresistive cantilevers due to the swelling of glassy polyolefin coatings during sorption of chemical vapors. To maximize the sensor response to a variety of chemical analytes, the polymers are selected based on their Hildebrand solubility parameters to span a wide range of chemical properties. We utilize a novel microcontact spotting method to reproducibly coat a single side of each cantilever in the array with the polymers. To demonstrate the utility of the sensor array we have reproducibly detected 11 chemical vapors, representing a breadth of chemical properties, in real time and over a wide range of vapor concentrations. We also report the detection of the chemical warfare agents (CWAs) VX and sulfur mustard (HD), representing the first published report of CWA vapor detection by a polymer-based, cantilever sensor array. Comparisons of the theoretical polymer/vapor partition coefficient to the experimental cantilever deflection responses show that, while general trends can be reasonably predicted, a simple linear relationship does not exist.  相似文献   

20.
In this study we investigate thermally-responsive surfaces prepared by grafting PNIPAm from a cationic macroinitiator (MI) that was adsorbed onto a range of anionic substrates. The substrates used were mica, glass, quartz and high surface area carbon foam. The carbon foam was rendered thermally responsive by first coating it with a layer of calcined laponite particles. PNIPAm brushes were grown from the substrates using surface-initiated atom transfer radical polymerisation. The thermally-responsive PNIPAm layers were characterised in detail at room temperature and 50 °C using atomic force microscopy (AFM) and contact angle measurements. The surfaces changed from being non-adhesive to adhesive when the temperature was increased to 50 °C. Young’s modulus values and adhesive force values are reported. Particle capture experiments involving dispersed polystyrene or poly(BD/MAA) (butadiene and methacrylic acid) particles were conducted. High extents of particle capture were observed. It was shown that the highest extents of thermally-triggered particle capture at 50 °C occurred for surfaces that exhibited the largest increases in contact angle upon increasing the temperature. Importantly, thermally-triggered capture for both anionic polystyrene and poly(BD/MAA) particles was shown to be partially reversible with up to 30% of the captured particles released during cooling. This is the first time that significant reversibility of thermally-triggered capture of polymer particles has been reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号