首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have experimentally demonstrated a tunable multi-wavelength Brillouin–erbium fiber laser with over 40 GHz spacing utilizing two cascaded double Brillouin-frequency-spacing cavities. In this laser configuration, two segments of 25 km-long single-mode fibers are used as Brillouin gain medium in each ring cavity, and a segment of 8 m-long erbium-doped fiber with 980 nm pump is employed to amplify Brillouin pump (BP). At BP wavelength of 1550 nm, BP power of 8.3 dBm (6.8 mW) and the maximum 980 nm pump power of 27.78 dBm (600 mW), seven output channels with fourfold Brillouin-frequency spacing, and the tuning range of 15 nm from 1545 to 1560 nm are achieved. The proposed multi-wavelength Brillouin–erbium fiber laser has wide applications, such as in microwave signal generation and optical communications.  相似文献   

2.
A multiwavelength laser comb using a bismuth-based erbium-doped fiber and 50 m photonic crystal fiber is demonstrated in a ring cavity configuration. The fiber laser is solely pumped by a single 1455 nm Raman pump laser to exploit its higher power delivery compared to that of a single-mode laser diode pump. At 264 mW Raman pump power and 1 mW Brillouin pump power, 38 output channels in the L-band have been realized with an optical signal-to-noise ratio above 15 dB and a Stokes line spacing of 0.08 nm. The laser exhibits a tuning range of 12 nm and produces stable Stokes lines across the tuning range between Brillouin pump wavelengths of 1603 nm and 1615 nm.  相似文献   

3.
We have demonstrated a simple ring cavity tunable multiwavelength Brillouin/Erbium fiber laser (MWBEFL), in which 70 m highly nonlinear photonic crystal fiber (HNL-PCF) is used as the Brillouin gain medium. The fiber laser utilizes recycling mechanism to enhance stimulated Brillouin scattering (SBS). The configuration that consists of only 3 optical components is easy to be integrated and improves the practicality. At the maximum 1480 nm pump power of 110 mW and the Brillouin pump power of 3 dBm, 10 stable output channels with more than 10 dB optical signal to noise ratio (OSNR) and 0.078 nm channel spacing could achieve 10 nm tuning ranges.  相似文献   

4.
Ramzia Salem  A. M.  Al-Mansoori  M. H.  Hizam  H.  Mohd Noor  S. B.  Mahdi  M. A. 《Laser Physics》2011,21(2):389-394
A multiwavelength laser comb using 2.49 m Bismuth-oxide erbium-doped fiber (Bi-EDF) with different lengths of large effective area fiber (LEAF) in a ring cavity configuration is realized. The Bi-EDF is used as the linear gain medium and LEAF is used as the non-linear gain medium for stimulated Brillouin scattering. Out of the four different lengths, the longest length of 25 km LEAF exhibits the widest tuning range of 44 nm (1576 to 1620 nm) in the L-band at 264 mW pump power and 5 mW Brillouin pump power. In addition, a total of 15 output channels are achieved with total average output power of −8 dBm from this laser structure. All Brillouin Stokes signals exhibit high peak power of above −20 dBm per signal and their optical signal-to-noise ratio of greater than 15 dB.  相似文献   

5.
Ahmad  B. A.  Al-Alimi  A. W.  Abas  A. F.  Harun  S. W.  Mahdi  M. A. 《Laser Physics》2012,22(5):977-981
A double frequency spaced multiwavelength Brillouin-Erbium doped fiber laser (BEDFL) with figure-of-eight cavity have been successfully developed and tested. Double frequency spacing is achieved by using a piece of 2 km of highly nonlinear fiber (HNLF) as a gain medium. Figure-of-eight configuration removes the odd order Stokes signals via a four-port circulator. Fifteen Stokes channels are simultaneously generated with a spacing of 0.154 nm that is around 20 GHz, when the Brillouin pump and 980 nm pump powers are fixed at the optimized values of 6 dBm and 40 mW, respectively. Fourteen anti stoke channels are also obtained, which are generated through four wave mixing (FWM) process in the laser cavity. The output is smooth triangular comb. The BEFL can also be tuned from 1526.5 to 1567.5 nm.  相似文献   

6.
Multi-wavelength Brillouin fiber laser generation using dual-pass approach   总被引:1,自引:0,他引:1  
A simple and compact multi-wavelength tunable Brillouin fiber laser (BFL) in conjunction with dual-pass approach is proposed and experimentally compared with the output of a conventional single ring cavity architecture. This BFL source is demonstrated using 10 km long non-zero dispersion shifted fiber (NZ-DSF) as a Brillouin gain medium. By single ring cavity configuration, odd-order Brillouin Stokes lines appear in the backward direction with the line spacing 0.16 nm (∼20 GHz) between each two consecutive waves. However, this single ring cavity in conjunction with dual-pass configuration is able to generate Brillouin Stokes lines with 0.08 nm spacing by providing bi-directional oscillations of Brillouin waves in both forward and backward directions. With a Brillouin pump power of 15.3 dBm, approximately up to 17 Brillouin Stokes lines are generated which is tunable over 40 nm tuning range.  相似文献   

7.
A tunable multiwavelength Brillouin-erbium fiber laser (MW-BEFL) using a twin-core fiber (TCF) coupler is proposed and demonstrated. The TCF coupler is formed by splicing a section of TCF between two single-mode fibers. By simply applying bending curvature on the TCF coupler, the peak net gain is shifted close to the Brillouin pump (BP), which has advantage for suppressing self-lasing cavity modes with low-BP-power injection. In this work, the dependency of the Stokes signals tuning range on the free spectral range (FSR) of TCF coupler is studied. It is also found that the tuning range of MW-BEFL can exceed the FSR of TCF coupler by adopting proper BP power and 980-nm pump power. Up to 40 nm tuning range of MW-BEFL in the absence of self-lasing cavity modes is achieved.  相似文献   

8.
The generation of a multiple wavelength source using a bismuth-based erbium-doped fiber (Bi-EDF) in a linear cavity configuration is demonstrated. The configuration uses a pair of optical circulators at the input and output ends of the cavity to form a resonator for multi-wavelength generation in conjunction with optical couplers to inject the Brillouin pump (BP) and to tap the output at the two ends. The Brillouin erbium fiber laser (BEFL) comb with a 2.15 m of Bi-EDF has a wavelength spacing of 0.09 nm and operates in long-wavelength (L-) band region. A stable output laser comb of 50 lines is obtained at a BP of 1568.2 nm and 5 dBm and two 1480 nm pumps at 120 mW. The injected BP wavelength and power as well as the 1480 nm pump powers have a great effect on the number of lines and output power of the BEFL. This configuration is compact due to the use of the significantly shorter Bi-EDF as the linear gain medium, and can be made more compact by replacing the single-mode fiber with highly non-linear fibers such as holey fibers.  相似文献   

9.
Abstract

A tunable multi-wavelength L-band Brillouin–Raman fiber laser with a 20-GHz channel spacing utilizing bidirectional ring cavity is proposed and experimentally investigated. The laser employs a co-pumped dispersion compensating fiber as a gain medium for both Brillouin and Raman gains. With a Raman pump of 425 mW, the laser system can generate up to 12 double-spaced Brillouin Stokes signals. This simple laser configuration provides stable Brillouin Stokes signals in the absence of self-lasing cavity modes with a tuning range exceeding 35 nm without using any filtering mechanism. The Stokes signals have more than 20 dB of optical signal-to-noise ratio.  相似文献   

10.
We experimentally demonstrate a multiwavelength Brillouin-erbium fiber laser in two configurations; uni-directional and bi-directional propagation of Brillouin pump and Brillouin Stokes signals through an Erbium-doped fiber gain. The influence of these configurations on the performance of the output parameters in terms of lasing threshold, output channel generation and tuning range of the generated output channels are investigated. We discovered that there is a trade-off between these two fiber laser configurations. The uni-directional amplifier configuration provides greater tuning range of 46.8 nm against 23 nm at maximum Brillouin pump power of 2 mW and 1480-nm pump power of 130 mW. On the other hand, the bi-directional amplifier configuration provides 13 output channels against 6 output channels obtained from the uni-directional amplifier configuration at the same pumping powers. Nevertheless, the bi-directional amplifier configuration requires much lower pump power to initiate lasing.  相似文献   

11.
15波长输出的布里渊掺铒光纤激光器   总被引:8,自引:3,他引:5  
多波长布里渊掺铒光纤激光器是一种新型的多波长光纤激光器,其原理是利用受激布里渊增益和掺铒光纤的线性增益,可以在常温下得到波长间隔约为0.08nm(~10GHz)的多波长输出。报道的布里渊掺铒光纤激光器,在布里渊抽运功率为1.7mW、980nm抽运功率为300mW的情况下得到稳定的15个波长(间隔~10GHz)的输出,这种激光器用作光传感器、光谱分析仪以及密集波分复用系统的光源。实验发现,输出波长的个数随着980nm抽运功率的增大而增加。另外,布里渊掺铒光纤激光器的信号功率主要来自于掺铒光纤的增益,而布里渊增益对它的影响不大。  相似文献   

12.
The operation of the self-excited Brillouin/erbium fiber laser (BEFL) is experimentally demonstrated. It uses a forward pumped erbium-doped fiber (EDF) as a gain medium to generate a Brillouin-pump (BP) and amplify the Stokes frequency signals generated in a single-mode fiber (SMF). The operating wavelength varies with changes of coupling ratio of the looping arm. The optimum BEFL operation is obtained with a center wavelength at 1567.5 nm by looping back 20% of BEFL output into the other end of the SMF. The BEFL output power and number of lines increases gradually as 980-nm pump power increases. At the maximum 980-nm pump power of 118 mW, a stable and strong BEFL comb of up to 16 lines with 11 GHz spacing is demonstrated. The self-excited BEFL has the potential to be used in the future dense wavelength division multiplexing (DWDM) communication system.  相似文献   

13.
A multi-wavelength Brillouin/erbium-doped fiber laser (BEFL) which operates in 1594 nm region is demonstrated using a 215 cm long Bismuth-based EDF and SMF. Two optical circulators were used at the output ends of the system to form a linear cavity to produce a cascaded Brillouin Stokes and anti-Stokes. A stable output laser comb of more than 20 lines was obtained with a spacing of approximately 0.089 nm at a Brillouin pump power of 4 dBm and two 1,480-nm pumps at powers of 100 mW. The number of lines is relatively higher compared with the ring cavity BEFL.  相似文献   

14.
A multi-wavelength Brillouin-erbium ring-cavity fiber laser utilizing 2-m erbium doped fiber (EDF) and 70-m high nonlinear photonic crystal fiber (PCF) is proposed and demonstrated. The output characteristics and also the impacts of pump and Brillouin pump (BP) on the output spectra are investigated in detail. The output number and wavelength location of Brillouin lines are tunable by adjusting the power of 1465 nm pump and BP, and a 5-channel output within 11 nm (1551–1562 nm) tuning range is achieved by choosing appropriate pump power.  相似文献   

15.
A multiwavelength Brillouin/erbium fibre laser (BEFL) which operates in the long wavelength (L-band) region is demonstrated for potential applications in an L-band wavelength division multiplexing (WDM) communication system. The laser configuration consists of a long erbium-doped fibre to enable L-band amplification where two 3-dB couplers take a portion of the generated BEFL signal and re-inject it into the single mode fibre to seed a cascaded BEFL line in the same direction as the first BEFL line. A stable and strong laser comb of up to five lines with 10-GHz spacing has been obtained with a Brillouin pump (BP) of 9.2 mW and a 980 nm pump of 92 mW. The BEFL has shown a broad tuning range with a tuning characteristic for line #1 which is flat over a range greater than 9.9 nm.  相似文献   

16.
In this paper, we experimentally demonstrate a novel configuration of multiwavelength Brillouin–Raman random fiber laser (MBRRFL) utilizing a half-open cavity. The laser resonator is formed by fiber loop mirror at the Brillouin pump (BP) side and random distributed Rayleigh backscattering in a 10 km dispersion compensating fiber. As a result, we are able to obtain a flat amplitude bandwidth of 16.8 nm from 1,550.0 to 1,566.8 nm built-in 210 uniform Brillouin Stokes lines with 0.08 nm spacing and an average OSNR of 13.5 dB. We also studied the influence of BP power and wavelength on the MBRRFL’s performance. Furthermore, comparing with the open cavity configuration, the discrepancies in power level and linewidth between neighboring channels are overcome by using the half-open cavity.  相似文献   

17.
Multi-wavelength Brillouin fiber laser using dual-cavity configuration   总被引:2,自引:0,他引:2  
A simple technique for achieving multi-wavelength tunable multi-wavelength Brillouin fiber laser (BFL) based on dual-pass configuration is demonstrated. The BFL uses a piece of 10 km long non-zero dispersion shifted fiber (NZ-DSF) as a Brillouin gain medium to obtain odd-order Brillouin Stokes waves as an output with the line spacing of 0.16 nm (20 GHz) between each two consecutive waves by employing even-order Brillouin Stokes to improve output performance of the laser. With a BP of 15.3 dBm, at least 15 odd-order Brillouin Stokes and anti-Stokes lines are generated. The laser is room temperature stable, tunable over 50 nm wavelength range and has an optical signal to noise ratio of more than 30 dB at 1560 nm region. This Brillouin fiber laser can operate at any wavelength depending on the Brillouin pump (BP) wavelength used.  相似文献   

18.
Stimulated Brillouin scattering (SBS) characteristics in a 49 cm long highly doped Bismuth-based Erbium doped fiber (Bi-EDF) is investigated in the ring and linear cavity configurations. At Brillouin pump (BP) power of 6 dBm, the Brillouin laser peak power of the optimized ring Brillouin Erbium fiber laser (BEFL) is obtained at 23 dB higher than the peak power of the conventional linear cavity at an up shifted wavelength of 0.08 nm. This Bi-EDF ring cavity operates at nearly 1563 nm wavelength region, which is up-shifted by 0.08 nm from the Brillouin pump wavelength with the side mode suppression ratios (SMSR) of 29 and 23 dB in the forward and backward directions, respectively.  相似文献   

19.
We propose and demonstrate broadband Brillouin slow light using a multiple-longitudinal-mode tunable fiber laser as Brillouin pump. A tunable broadband Brillouin pump with a tuning range from 1 520 to 1 555 nm is generated using a fiber ring laser with a semiconductor optical amplifier (SOA) as its gain medium. The pump spectrum consists of a large number of longitudinal modes separated by 6 MHz. The 3-dB bandwidth is about 11.5 GHz, and its fluctuation is less than 100 MHz within the tuning range. An 8-Gb/s data signal can be delayed by up to 83.0 ps (bit error rate < 10 9) at 17-dBm pump power.  相似文献   

20.
D. Chen  H. Fu  W. Liu 《Laser Physics》2007,17(10):1246-1248
A novel single-longitudinal-mode (SLM) erbium-doped fiber laser with a simple linear cavity based on a fiber Bragg grating Fabry-Perot filter (FBG-FPF) and a narrowband (~0.06 nm) FBG is proposed and demonstrated experimentally. Two uniform FBGs form the FBG-FPF, which has two ultranarrow transmission bands with a bandwidth of 0.12 pm and a wavelength spacing of 0.095 nm. By slightly tuning the central wavelength of the narrowband FBG, SLM lasing at 1549.658 or 1549.563 nm (corresponding to the two transmission peaks of the FBG-FPF) is achieved with a laser output power of ~4 mW, when the pump power is ~75 mW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号