首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Tn antigen (GalNAc-α-1-O-Thr/Ser) is a well-known tumor-associated carbohydrate determinant. The use of glycopeptides that incorporate this structure has become a significant and promising niche of research owing to their potential use as anticancer vaccines. Herein, the conformational preferences of a glycopeptide with an unnatural Tn antigen, characterized by a threonine decorated with an sp2-iminosugar-type α-GalNAc mimic, have been studied both in solution, by combining NMR spectroscopy and molecular dynamics simulations, and in the solid state bound to an anti-mucin-1 (MUC1) antibody, by X-ray crystallography. The Tn surrogate can mimic the main conformer sampled by the natural antigen in solution and exhibits high affinity towards anti-MUC1 antibodies. Encouraged by these data, a cancer vaccine candidate based on this unnatural glycopeptide and conjugated to the carrier protein Keyhole Limpet Hemocyanin (KLH) has been prepared and tested in mice. Significantly, the experiments in vivo have proved that this vaccine elicits higher levels of specific anti-MUC1 IgG antibodies than the analog that bears the natural Tn antigen and that the elicited antibodies recognize human breast cancer cells with high selectivity. Altogether, we compile evidence to confirm that the presentation of the antigen, both in solution and in the bound state, plays a critical role in the efficacy of the designed cancer vaccines. Moreover, the outcomes derived from this vaccine prove that there is room for exploring further adjustments at the carbohydrate level that could contribute to designing more efficient cancer vaccines.

An anti-cancer vaccine based on an unnatural antigen with an sp2-iminosugar fragment.  相似文献   

2.
A novel MUC1-glycopeptide-BSA conjugate vaccine with a specifically fluorinated Thomsen-Friedenreich antigen side chain at Thr6 was prepared. Preliminary immunological experiments reveal specific binding of the tumor-associated glycopeptide antigen analog by anti-MUC1-mouse antibodies.  相似文献   

3.
A novel synthesis of tetralactosaminyl O-glycoamino acid is described. The stereoselective assemblage of a lactosaminyl unit was performed by 2-trichloroacetamido group-assisted β-glycosylation. Initial investigation into the synthesis of decasaccharyl threonine 2 showed limited success because of the low yield in the step concerning the removal of 4-O-chloroacetyl groups. In contrast, 4-O-benzylated decasaccharyl threonine 50 was efficiently synthesized from key LacNAc derivative 35 carrying a 3-O-allyl protecting group at the Gal residue by reiterative glycosylation using the (N-phenyl)trifluoroacetimidate method. Decasaccharide 50 was used as a building block in the solid-phase synthesis of a MUC1-related glycopeptide. Synthetic glycopeptide was obtained through two acidic processes: cleavage from resin with reagent K at a lowered temperature and debenzylation with a diluted cocktail of low-acidity TfOH. Desired glycopeptide 54 was isolated as the major product, while a series of the saccharide-shortened minor products were generated due to the acid-labile property of the β-GlcNAc glycosidic linkages.  相似文献   

4.
The structural features of MUC1‐like glycopeptides bearing the Tn antigen (α‐O‐GalNAc‐Ser/Thr) in complex with an anti MUC‐1 antibody are reported at atomic resolution. For the α‐O‐GalNAc‐Ser derivative, the glycosidic linkage adopts a high‐energy conformation, barely populated in the free state. This unusual structure (also observed in an α‐S‐GalNAc‐Cys mimic) is stabilized by hydrogen bonds between the peptidic fragment and the sugar. The selection of a particular peptide structure by the antibody is thus propagated to the carbohydrate through carbohydrate/peptide contacts, which force a change in the orientation of the sugar moiety. This seems to be unfeasible in the α‐O‐GalNAc‐Thr glycopeptide owing to the more limited flexibility of the side chain imposed by the methyl group. Our data demonstrate the non‐equivalence of Ser and Thr O‐glycosylation points in molecular recognition processes. These features provide insight into the occurrence in nature of the APDTRP epitope for anti‐MUC1 antibodies.  相似文献   

5.
The tumor‐associated antigen mucin 1 (MUC1) has been pursued as an attractive target for cancer immunotherapy, but the poor immunogenicity of the endogenous antigen hinders the development of vaccines capable of inducing effective anti‐MUC1 immunodominant responses. Herein, we prepared synthetic anti‐MUC1 vaccines in which the hydrophilic MUC1 antigen was N‐terminally conjugated to one or two palmitoyl lipid chains (to form amphiphilic Pam‐MUC1 or Pam2‐MUC1). These amphiphilic lipid‐tailed MUC1 antigens were self‐assembled into liposomes containing the NKT cell agonist αGalCer as an adjuvant. The lipid‐conjugated antigens reshaped the physical and morphological properties of liposomal vaccines. Promising results showed that the anti‐MUC1 IgG antibody titers induced by the Pam2‐MUC1 vaccine were more than 30‐ and 190‐fold higher than those induced by the Pam‐MUC1 vaccine and the MUC1 vaccine without lipid tails, respectively. Similarly, vaccines with the TLR1/2 agonist Pam3CSK4 as an adjuvant also induced conjugated lipid‐dependent immunological responses. Moreover, vaccines with the αGalCer adjuvant induced significantly higher titers of IgG antibodies than vaccines with the Pam3CSK4 adjuvant. Therefore, the non‐covalent assembly of the amphiphilic lipo‐MUC1 antigen and the NKT cell agonist αGalCer as a glycolipid adjuvant represent a synthetically simple but immunologically effective approach for the development of anti‐MUC1 cancer vaccines.  相似文献   

6.
Self‐adjuvanting tricomponent vaccines were prepared and assessed for their self‐assembly and immunological activity in mouse models. The vaccines each consisted of a peptide or glycopeptide antigen that corresponds to a complete copy of the variable‐number tandem repeat (VNTR) of the tumor‐associated mucin 1 (MUC1) glycoprotein, the universal T‐cell helper peptide epitope PADRE, and the immunoadjuvant Pam3CysSer. The vaccines were shown to spontaneously self‐assemble in water to form isotropic particles varying in size from 17 to 25 nm and elicited robust humoral responses in murine models without the addition of an external adjuvant. The serum antibodies could recognize tumor‐associated MUC1 epitopes on the surface of MCF7 breast‐cancer cells and B16 melanoma cells, which overexpress this tumor‐associated glycoprotein.  相似文献   

7.
To study the effect of O-glycosylation on the conformational propensities of a peptide backbone, a 20-residue peptide (GSTAPPAHGVTSAPDTRPAP) representing the full length tandem repeat sequence of the human mucin MUC1 and its analogue glycosylated with the (2,6)-sialyl-T antigen on Thr11, were prepared and investigated by NMR and molecular modeling. The peptides contain both the GVTSAP sequence, which is an effective substrate for GalNAc transferases, and the PDTRP fragment, a known epitope recognized by several anti-MUC1 monoclonal antibodies. It has been shown that glycosylation of threonine in the GVTSAP sequence is a prerequisite for subsequent glycosylation of the serine at GVTSAP. Furthermore, carbohydrates serve as additional epitopes for MUC1 antibodies. Investigation of the solution structure of the sialyl-T glycoeicosapeptide in a H(2)O/D(2)O mixture (9:1) under physiological conditions (25 degrees C and pH 6.5) revealed that the attachment of the saccharide side-chain affects the conformational equilibrium of the peptide backbone near the glycosylated Thr11 residue. For the GVTSA region, an extended, rod-like secondary structure was found by restrained molecular dynamics simulation. The APDTR region formed a turn structure which is more flexibly organized. Taken together, the joined sequence GVTSAPDTR represents the largest structural model of MUC1 derived glycopeptides analyzed so far.  相似文献   

8.
Glycosyl amino acid mimetics of the typical GalNAc-(1→O)-Ser/Thr motif of O-glycopeptides were synthesised. Starting from galactose a 1,5-anhydro derivative could be obtained and regio- and stereoselectively coupled to serine- or threonine-derived aziridine compounds, respectively. The corresponding Fmoc derivatives could be used to prepare two 13-mer glycopeptides of the mucin MUC1 carrying instead of Ser-2 or Th-5, the corresponding O-glcycosyl amino acid mimetics.  相似文献   

9.
The N-terminal fragment of prohormone brain natriuretic peptide (NT-proBNP) is a commonly used biomarker for the diagnosis of congestive heart failure, although its biological function is not well known. NT-proBNP exhibits heavy O-linked glycosylation, and it is quite difficult to develop an antibody that exhibits glycosylation-independent binding. We developed an antibody that binds to the recombinant NT-proBNP protein and its deglycosylated form with similar affinities in an enzyme immunoassay. The epitope was defined as Gly63–Lys68 based on mimetic peptide screening, site-directed mutagenesis and a competition assay with a peptide mimotope. The nearest O-glycosylation residues are Thr58 and Thr71; therefore, four amino acid residues intervene between the epitope and those residues in both directions. In conclusion, we report that an antibody reactive to Gly63–Lys68 of NT-proBNP exhibits O-glycosylation-independent binding.  相似文献   

10.
In studies within the realm of cancer immunotherapy, the synthesis of exactly specified tumor‐associated glycopeptide antigens is shown to be a key strategy for obtaining a highly selective biological reagent, that is, a monoclonal antibody that completely differentiates between tumor and normal epithelial cells and specifically marks the tumor cells in pancreas tumors. Mucin MUC1, which is overexpressed in many prevalent cancers, was identified as a promising target for this strategy. Tumor‐associated MUC1 differs significantly from that expressed by normal cells, in particular by altered glycosylation. Structurally defined tumor‐associated MUC1 cannot be isolated from tumor cells. We synthesized MUC1–glycopeptide vaccines and analyzed their structure–activity relationships in immunizations; a monoclonal antibody that specifically distinguishes between human normal and tumor epithelial cells was thus generated.  相似文献   

11.
Nα-(4,4-Dimethyl-2,6-dioxocyclohexylidenemethylene) (Dmc) protected l-serine, l-threonine and l-homoserine have been prepared as tert-butyl esters in excellent yields. These hydrogenolysis stable acceptors underwent efficient α-O-glycosylation with an l-fucopyranosyl bromide donor and also allowed convenient protecting group manipulations to ultimately deliver novel glycoamino acid building blocks suitable for Fmoc based solid-phase glycopeptide synthesis.  相似文献   

12.
Glycosylation is one of the most common yet diverse post-translational modifications. Information on glycan heterogeneity and glycosite occupancy is increasingly recognized as crucial to understanding glycoprotein structure and function. Yet, no approach currently exists with which to holistically consider both the proteomic and glycomic aspects of a system. Here, we developed a novel method of comprehensive glycosite profiling using nanoflow liquid chromatography/mass spectrometry (nano-LC/MS) that shows glycan isomer-specific differentiation on specific sites. Glycoproteins were digested by controlled non-specific proteolysis in order to produce informative glycopeptides. High-resolution, isomer-sensitive chromatographic separation of the glycopeptides was achieved using microfluidic chip-based capillaries packed with graphitized carbon. Integrated LC/MS/MS not only confirmed glycopeptide composition but also differentiated glycan and peptide isomers and yielded structural information on both the glycan and peptide moieties. Our analysis identified at least 13 distinct glycans (including isomers) corresponding to five compositions at the single N-glycosylation site on bovine ribonuclease B, 59 distinct glycans at five N-glycosylation sites on bovine lactoferrin, 13 distinct glycans at one N-glycosylation site on four subclasses of human immunoglobulin G, and 20 distinct glycans at five O-glycosylation sites on bovine κ-casein. Porous graphitized carbon provided effective separation of glycopeptide isomers. The integration of nano-LC with MS and MS/MS of non-specifically cleaved glycopeptides allows quantitative, isomer-sensitive, and site-specific glycoprotein analysis.  相似文献   

13.
Core 3 and core 6 O-glycoamino acids were prepared in a protected form suited for Fmoc solid-phase peptide synthesis (SPPS). An N-trichloroacetyllactosamine derivative (2) was used as a highly β-selective glycosyl donor in 3-O-glycosylation of acceptors 3/4 and in 6-O-glycosylation of acceptors 5/6. Zn reduction of trisaccharides 7/8 and 13/14 was followed by acetylation to readily transform trichloroacetamido and azido groups to acetamido groups. Selective deprotection by Pd(0)-catalysis afforded core 3 O-glycan building blocks 11/12 and core 6 O-glycan building blocks 17/18. Usefulness of these building blocks for SPPS was demonstrated by the syntheses of the core 3-linked MUC2 tandem repeat glycopeptide and the core 6-linked glycopeptide segment of MUC6. The synthetic glycopeptides detached from the resin were debenzylated under the ‘low-acidity TfOH’ conditions.  相似文献   

14.
Herein, we devised a method for stereoselective O-glycosylation using an Ir(i)-catalyst which enables both hydroalkoxylation and nucleophilic substitution of glycals with varying substituents at the C3 position. In this transformation, 2-deoxy-α-O-glycosides were acquired when glycals equipped with a notoriously poor leaving group at C3 were used; in contrast 2,3-unsaturated-α-O-glycosides were produced from glycals that bear a good leaving group at C3. Mechanistic studies indicate that both reactions proceed via the directing mechanism, through which the acceptor coordinates to the Ir(i) metal in the α-face-coordinated Ir(i)-glycal π-complex and then attacks the glycal that contains the O-glycosidic bond in a syn-addition manner. This protocol exhibits good functional group tolerance and is exemplified with the preparation of a library of oligosaccharides in moderate to high yields and with excellent stereoselectivities.

Ir(i)-catalyzed α-selective O-glycosylation of glycals provided an access to both 2-deoxyglycosides and 2,3-unsaturated glycosides with a broad substrate scope. The underlying rationale of α-selectivity has been illustrated by the DFT study.  相似文献   

15.
In this work, the selenoester of unprotected glycopeptide was readily prepared, and the direct aminolysis of glycopeptide selenoester was successfully applied to synthesize MUC1 mucin sequence.  相似文献   

16.
A simple and effective activating system for S-phenyl thioglycosides, namely N-iodosuccinimide and catalytic copper(I) triflate, promotes beta-O-glycosylation at the serine and threonine hydroxyls of “mono-,” di-, and tripeptides. The same activator combination promotes carboxamide beta-N-glycosylation of asparagine-containing mono-, di, and tri-peptides, as well as a nucleoside carboxamide and a sulfonamide. An important feature of the copper(I) triflate method is that undesired amide O-glycosylation is largely circumvented. For both sets of biologically important acceptor sites (HO– and –CONH2), a beta-GlcNAc-equivalent donor is demonstrated to provide the linkages efficiently. Streamlined deprotection sequences have been developed based on global hydrogenolysis that lead smoothly to the parent glycopeptides. The core glycopeptide region for biological protein N-glycosylation, represented by N4-(β-N-acetyl-D-2-glucosaminyl)-Asp-Gly-Thr-OH, has been prepared in solution, purified, and characterized as the fully deprotected (mono)glycosylated tripeptide.  相似文献   

17.
Redirecting endogenous antibodies in the bloodstream to tumor cells using synthetic molecules is a promising approach to trigger anti-tumor immune responses. However, current molecular designs only enable the use of a small fraction of endogenous antibodies, limiting the therapeutic potential. Here, we report Fc-binding antibody-recruiting molecules (Fc-ARMs) as the first example addressing this issue. Fc-ARMs are composed of an Fc-binding peptide and a targeting ligand, enabling the exploitation of endogenous antibodies through constant affinity to the Fc region of antibodies, whose sequence is conserved in contrast to the Fab region. We show that Fc-ARM targeting folate receptor-α (FR-α) redirects a clinically used antibody mixture to FR-α+ cancer cells, resulting in cancer cell lysis by natural killer cells in vitro. Fc-ARMs successfully interacted with antibodies in vivo and accumulated in tumors. Furthermore, Fc-ARMs recruited antibodies to suppress tumor growth in a mouse model. Thus, Fc-ARMs have the potential to be a novel class of cancer immunotherapeutic agents.

Fc-binding antibody-recruiting molecules provide robust and sufficient opportunities to employ endogenous antibodies for anti-tumor immune responses.  相似文献   

18.
Multivalent synthetic vaccines were obtained by solid‐phase synthesis of tumor‐associated MUC1 glycopeptide antigens and their coupling to a Pam3Cys lipopeptide through click reactions. These vaccines elicited immune responses in mice without the use of any external adjuvant. The vaccine containing four copies of a MUC1 sialyl‐TN antigen showed a significant cluster effect. It induced in mice prevailing IgG2a antibodies, which bind to MCF‐7 breast tumor cells and initiate the killing of these tumor cells by activation of the complement‐dependent cytotoxicity complex.  相似文献   

19.
To improve the prediction accuracy of O-glycosylation sites, and analyze the structure of the O-glycosylation sites, factor analysis based prediction is proposed in this study. Our studies show that factor analysis strongly boosts machine learning algorithms’ performance in glycosylation site prediction besides demonstrates advantages compared to principal component analysis and nonnegative matrix factorization. In addition, we have found that factor analysis based linear discriminant analysis seem to be a desirable method in O-glycosylation site prediction for its advantage in both accuracy and time complexity than other machine learning methods. To the best of our knowledge, it is the first work to employ factor analysis in glycosylation site prediction and will inspire more future work in this topic.  相似文献   

20.
We report a novel methodology for rapid and quantitative screening of O-glycosylation reactions of application to the analysis of parallel reaction systems. Our system exploits perdeuterated benzyl (Bn-d7) ether, and stereoselectivity and yield are evaluated by 1H NMR and MALDI-TOF MS, respectively. This paper summarizes over 240 screenings of 1 → 3 linkage formation between glucose residues targeting the α-isomer in high yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号