首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The velocity fields obtained by PIV (Particle Image Velocimetry) in supersonic flows are not sufficient to determine the integral characteristics of the flow. Additional data, for example, on pressure can be obtained from the solution of the Navier?Stokes equations. For incompressible flows, the solution of these equations is not too complicated. However, for supersonic flows, the need to take into account the flow density and the increasing number of experimental errors make it more difficult. This paper proposes a new method for calculating density and pressure from PIV data on the basis of the continuity equation. This method is robust and easy to implement for compressible flows.  相似文献   

2.
The system for Particle Image Velocimetry (PIV) measurements in the flow with superimposed pulsations of the fluid (air) has been developed. Measurements of velocity and vorticity fields in a smooth duct in certain phases of superimposed pulsations have been performed. Statistics of a turbulent pulsating flow: velocity profiles, turbulent pulsations, and Reynolds stresses has been obtained.  相似文献   

3.
Results of 2- and 3-dimensional Particle Image Velocimetry (PIV) measurements of the flow velocity fields in narrow electrostatic precipitators (ESPs) with either a longitudinal or transverse wire electrode are presented in this work. The obtained results confirmed that the particle flow in the ESP have a strongly 3D character mainly due to applied voltage and narrow cross section of the ESP duct. It was found that several vortices were formed along and across the ESP duct. The complex character of the flow in both ESP may considerably affect the particle collection efficiency of the ESP. This issue is under investigation.  相似文献   

4.
Shallow depth flow fields and low velocity magnitudes are often challenges for traditional velocity measuring instruments. As such, new techniques have been developed that provide more reliable velocity measurements under these circumstances. In the present study, the two-dimensional (2D) surface velocity field of shallow basins is assessed by means of Large-Scale Particle Image Velocimetry (LSPIV). The measurements are carried out at the water surface, which means that a laser light sheet is not needed. Depending on the time scales of the flow and the camera characteristics, it is even possible to work with a constant light source. An experimental application of this method is presented to analyze the effects of shallow basin geometry on flow characteristics in reservoirs where large coherent two-dimensional flow structures in the mixing layer dominate the flow characteristics. The flow and boundary conditions that give rise to asymmetric flow are presented. Asymmetric flow structures were observed starting from basin shape ratios that are less than or equal to 0.96. By decreasing the basin length and increasing the shape ratio to greater than 0.96, the flow structure generally tends towards a symmetric pattern.  相似文献   

5.
A cross-correlation algorithm, which enables the obtaining of the velocity field in the flow with a spatial resolution up to a single pixel per vector, has been realized in the work. It gives new information about the structure of microflows as well as increases considerably the accuracy of the measurement of the flow velocity field. In addition, the realized algorithm renders information about the velocity fluctuations in the flow structure. The algorithm was tested on synthetic data at a different number of test images the velocity distribution on which was specified by the Siemens star. The experimental validation was done on the data provided within the international project “4th International PIV Challenge”. Besides, a detailed comparison with the Particle Image Velocimetry algorithm, which was realized previously, was carried out.  相似文献   

6.
Visualization of flows has a special meaning in aerodynamics. Unsteady three dimensional flow fields need a visual display of experimental as well as theoretical results. Especially in experiments optical visualization techniques often lead to completely new insights into flow phenomena. Some discoveries which have been made this way are described in this review. Topics considered in detail are vortex obstacle interaction, Particle Image Velocimetry, long range Laser Doppler Velocimetry and Pressure Sensitive Paint.  相似文献   

7.
The present work focuses on the measurements of instantaneous concentration fields of a passive scalar due to an impinging round jet injection into a liquid filled rectangular tank. Simultaneous measurements of velocity and passive scalar concentration fields have been conducted by using Particle Image Velocimetry (planar 2C and 3C PIV) and Planar Laser Induced Fluorescence (PLIF) techniques. The mixing injection behavior is analyzed for several injection values of depth and flow rate. Results showed the classical developing and self-similar regions of the jet, the mixing layer and the coupled concentration and velocity fields due to impingement. Finally, 3C PIV reveals a 3D flow jet structure which seems to be a swirl that does not disturb 2D analysis.  相似文献   

8.
The experimental flow visualization tool, Particle Image Velocimetry (PIV), is being extended to determine the velocity fields in three-dimensional, two-phase fluid flows. In the past few years, the technique has attracted quite a lot of interest. PIV enables fluid velocities across a region of a flow to be measured at a single instant in time in the whole volume (global) of interest. This instantaneous velocity profile of a given flow field is determined by digitally recording particle (microspheres or bubbles) images within the flow over multiple successive video frames and then conducting flow pattern identification and analysis of the data. This paper presents instantaneous velocity measurements in various three-dimensional, bubbly two-phase flow situations. This information is useful for developing or improving existing computer constitutive models that simulate this type of flow field. It is also useful for understanding the detailed structure of two-phase flows.  相似文献   

9.
10.
I. Kimura  A. Hattori  M. Ueda 《显形杂志》2000,2(3-4):223-228
This paper presents a new particle pairing algorithm using “Genetic Algorithms” for DPIV (Digital Particle Image Velocimetry), which are searching algorithms for obtaining an optimal solution based on the mechanism of evolution. The particle pairing between two tracer images with a constant time interval is needed to obtain a velocity vector field. Since the algorithm adopts a fitness function which totally evaluates the similarity between respective small particle patterns in the two tracer images over the field, it promises to give a more correct velocity vector distribution than the conventional PTV (Particle Tracking Velocimetry) which identifies each particle based on its local information. In addition, a particle pattern matching for the similarity is performed after correcting fluid rotation. It therefore is robust against a high particle density and an increase in the time interval. The algorithm is applied to the PIV standard images distributed through the Internet (http://www.vsj.or.jp/piv). It gives a correct velocity vector distribution as a result even if a pair of the successive images has a large time interval.  相似文献   

11.
The instantaneous and ensemble averaged flow characteristics of a round jet issuing normally into a crossflow was studied using a flow visualization technique and Particle Image Velocimetry measurements. Experiments were performed at a jet-to-crossflow velocity ratio, 3.3 and two Reynolds numbers, 1,050 and 2,100, based on crossflow velocity and jet diameter. Instantaneous laser tomographic images of the vertical center plane of the crossflow jet show that there exists very different natures in the flow structures of the near field jet due to Reynolds number effect even though the velocity ratio is same. It is found that the shear layer becomes much thicker when the Reynolds number is 2,100 because of the strong entrainment of the inviscid fluid by turbulent interaction between the jet and crossflow. The mean and second order statistics are calculated by ensemble averaging over 1,000 realizations of instantaneous velocity fields. The detail characteristics of mean flow field, streamwise and vertical rms velocity fluctuations, and Reynolds shear stress distributions are presented. The new PIV results are compared with those from previous experimental and LES studies.  相似文献   

12.
Mean velocity data obtained by PIV (Particle Image Velocimetry) around the head of a real-life size breathing thermal manikin are presented for two cases of ‘no breathing’ and ‘continuous exhalation through nose’. Experiments were conducted in a special chamber which provided stationary convective flows around the seated manikin. Results are limited to the plane of symmetry. The paper aims to describe the physical structure of the turbulent flow field by presenting velocity and vorticity data in color graphics.  相似文献   

13.
The VKS experiment has evidenced dynamo action in a highly turbulent liquid sodium von Kármán flow [R. Monchaux et al., Phys. Rev. Lett. 98, 044502 (2007)]. However, the existence and the onset of a dynamo happen to depend on the experimental configuration. Performing kinematic dynamo simulations on real flows, we study the influence of the configuration on dynamo action, namely the sense of rotation and the presence of an annulus in the shear layer plane. The 3 components of the mean velocity fields are measured in a water prototype for different VKS configurations through Stereoscopic Particle Imaging Velocimetry. Experimental data are then processed in order to use them in a periodic cylindrical kinematic code. Even if the kinematic predicted mode appears to be different from the experimental saturated one, the results concerning the existence of a dynamo and the thresholds are in qualitative agreement, showing the importance of the flow characteristics.  相似文献   

14.
A Dynamic Programming based Optical Flow technique has been applied to the Particle Image Velocimetry (PIV) problem. It has been used for the extraction of dense velocity fields in a planar section of a fluid flow illuminated by a thin laser light sheet. Two (in-plane) components of the velocity vectors can be recovered using a single camera and all three components can be recovered using two or three cameras. Quantitative performance tests have been carried out on calibrated synthetic image sequences from the PIV Standard Project of the Visualization Society of Japan (VSJ). Results are presented for the 2D flow based sequences (STD01 to STD08 Standard Images) and the 3D flow based sequences (STD301, STD302, STD331 and STD337 Standard Images). The RMS error is within the 2–3% range and within the 4–8% range for recovery of the two-component and the three-component velocity vectors respectively.  相似文献   

15.
A blade-plane actuator immersed in a dielectric liquid and connected to a high voltage power supply produces a Coulomb force which sets the liquid in motion from the blade tip to the plane. Jets of more than 1 m/s have already been observed. In this work, a method is proposed to estimate the electric force generated by a blade plane actuator from Particle Image Velocimetry (PIV) velocity field measurements. The originality of this paper comes from the fact that the volume force is not measured directly with an aerodynamic shielded balance but calculated from velocity fields obtained by Particle Image Velocimetry. In this article the global time-averaged electric force is computed in a fixed control volume by the use of the momentum equation in its integral form.  相似文献   

16.
A technique for visualizing a velocity field in an entire plane has been developed by taking ‘Doppler Pictures’ using Michelson interferometry. With the Doppler Picture Velocimetry (DPV), information about the instantaneous and local velocities of tracers passing through a light sheet is available. The technique for taking and processing the Doppler pictures has been improved recently and the state-of-the-art of the DPV method will be described with an application in high-speed fluid flows showing the velocity distribution in a light sheet plane crossing a supersonic wedge flow generated in the high-energy shock tunnel STB of ISL. A comparison with Particle Image Velocimetry (PIV) velocity visualizations is also presented.  相似文献   

17.
Stereoscopic Particle Image Velocimetry (PIV) has been used to make a three-dimensional flow mapping of a jet in crossflow. The Reynolds number based on the free stream velocity and the jet diameter was nominally 2400. A jet-to-crossflow velocity ratio of 3.3 was used. Details of the formation of the counter rotating vortex pair found behind the jet are shown. The vortex pair results in two regions with strong reversed velocities behind the jet trajectory. Regions of high turbulent kinetic energy are identified. The signature of the unsteady shear layer vortices is found in the mean vorticity field.  相似文献   

18.
The cold flow of a prototype industrial burner in a cylindrical combustion chamber is investigated. Two concentric annular axial jets simulate this complex flow field, which is investigated using Laser Sheet flow Visualization (LSV), Digital Particle Image Velocimetry (DPIV), Laser Doppler Velocimetry (LDV) and Computational Fluid Dynamics (CFD). The aim is to advance the physical understanding of combustion chamber flow fields and to assist the development of CFD codes specialized in such flows. These simulations generate large amount of data for various measured and calculated quantities. Thus, visualization and comparison procedures are applied for the validation of obtained results. The study reported here is one of the experiments applied in the design of the Quantitative Flow Field Visualization (QFView) software, a web-based environment which supports distributed data access. The application of QFView data analysis greatly improved the understandings about the various transition regions of the flow under investigation.  相似文献   

19.
The Particle Image Velocimetry (PIV) technique and laser Doppler anemometer (LDA) were used to measure the components of tangential and axial velocities of gas and particles in a vortex chamber with a fluidized bed, particle layer dynamics was estimated qualitatively, and the flow in the vortex chamber with a centrifugal fluidized bed of solid particles was simulated numerically. It is shown that with the growth of gas velocity in the swirler slots, the rotation velocity of bed grows almost linearly, and with an increasing bed mass, the rotation velocity decreases. Data on distributions of the volume fraction of particles and gas flow velocity inside the bed were obtained by numerical calculation.  相似文献   

20.
The present study provides flow visualization on complex internal flows in a radial diffuser pump under part-load conditions by using the three-dimensional Navier-Stokes code CFX-10 with Detached Eddy Simulation (DES) turbulence model. Particle Image Velocimetry (PIV) measurements have been conducted to validate numerical results. The CFD results show good agreements with experimental ones on both the phase-averaged velocity fields and turbulence field. The detailed flow analysis shows that no separation occurs at 0.75Qdes although a low-velocity zone develops on the rear impeller suction side. Steady flow separations are observed on the impeller suction sides at 0.5Qdes but with different onsets and amounts. When reducing the flow rate to 0.25Qdes, CFD predicts different types of back flows in the impeller region, including steady leading edge separations, rotating vortex in the impeller wake region, and back flow on the impeller pressure side.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号