首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rate coefficients over the temperature range 206-380 K are reported for the gas-phase reaction of OH radicals with 2,3,3,3-tetrafluoropropene (CF(3)CF=CH(2)), k(1)(T), and 1,2,3,3,3-pentafluoropropene ((Z)-CF(3)CF=CHF), k(2)(T), which are major components in proposed substitutes for HFC-134a (CF(3)CFH(2)) in mobile air-conditioning units. Rate coefficients were measured under pseudo-first-order conditions in OH using pulsed-laser photolysis to produce OH and laser-induced fluorescence to detect it. Rate coefficients were found to be independent of pressure between 25 and 600 Torr (He, N(2)). For CF(3)CF=CH(2), the rate coefficients, within the measurement uncertainty, are given by the Arrhenius expression k(1)(T)=(1.26+/-0.11) x 10(-12) exp[(-35+/-10)/T] cm(3) molecule(-1) s(-1) where k(1)(296 K)=(1.12+/-0.09) x 10(-12) cm(3) molecule(-1) s(-1). For (Z)-CF(3)CF=CHF, the rate coefficients are given by the non-Arrhenius expression k(2)(T)=(1.6+/-0.2) x 10(-18)T(2) exp[(655+/-50)/T] cm(3) molecule(-1) s(-1) where k(2)(296 K)=(1.29+/-0.06) x 10(-12) cm(3) molecule(-1) s(-1). Over the temperature range most relevant to the atmosphere, 200-300 K, the Arrhenius expression k(2)(T)=(7.30+/-0.7) x 10(-13) exp[(165+/-20)/T] cm(3) molecule(-1) s(-1) reproduces the measured rate coefficients very well and can be used in atmospheric model calculations. The quoted uncertainties in the rate coefficients are 2sigma (95% confidence interval) and include estimated systematic errors. The global warming potentials for CF(3)CF=CH(2) and (Z)-CF(3)CF=CHF were calculated to be <4.4 and <3.6, respectively, for the 100 year time horizon using infrared absorption cross sections measured in this work, and atmospheric lifetimes of 12 and 10 days that are based solely on OH reactive loss.  相似文献   

2.
Rate constants for the reactions of OH radicals and NO3 radicals with O,O-diethyl methylphosphonothioate [(C(2)H(5)O)(2)P(S)CH(3); DEMPT] and O,O,O-triethyl phosphorothioate [(C(2)H(5)O)(3)PS; TEPT] have been measured using relative rate methods at atmospheric pressure of air over the temperature range 296-348 K for the OH radical reactions and at 296 +/- 2 K for the NO(3) radical reactions. At 296 +/- 2 K, the rate constants obtained for the OH radical reactions (in units of 10(-11) cm(3) molecule(-1) s(-1)) were 20.4 +/- 0.8 and 7.92 +/- 0.27 for DEMPT and TEPT, respectively, and those for the NO(3) radical reactions (in units of 10(-15) cm(3) molecule(-1) s(-1)) were 2.01 +/- 0.20 and 1.03 +/- 0.10, respectively. Upper limits to the rate constants for the reactions of O(3) with DEMPT and TEPT of <6 x 10(-20) cm(3) molecule(-1) s(-1) were determined in each case. Rate constants for the OH radical reactions, measured relative to k(OH + alpha-pinene) = 1.21 x 10(-11) e(436/T) cm(3) molecule(-1) s(-1), resulted in the Arrhenius expressions k(OH + DEMPT) = 1.08 x 10(-11) e(871+/-25)/T cm(3) molecule(-1) s(-1) and k(OH + TEPT) = 8.21 x 10(-13) e(1353+/-49)/T cm(3) molecule(-1) s(-1) over the temperature range 296-348 K, where the indicated errors are two least-squares standard deviations and do not include the uncertainties in the reference rate constant. Diethyl methylphosphonate was identified and quantified from the OH radical and NO(3) radical reactions with DEMPT, with formation yields of 21 +/- 4%, independent of temperature, from the OH radical reaction and 62 +/- 11% from the NO(3) radical reaction at 296 +/- 2 K. Similarly, triethyl phosphate was identified and quantified from the OH radical and NO(3) radical reactions with TEPT, with formation yields of 56 +/- 9%, independent of temperature, from the OH radical reaction and 78 +/- 15% from the NO(3) radical reaction at 296 +/- 2 K.  相似文献   

3.
Rate coefficients for the gas-phase reaction of the OH radical with (E)-2-pentenal (CH(3)CH(2)CH[double bond]CHCHO), (E)-2-hexenal (CH(3)(CH(2))(2)CH[double bond]CHCHO), and (E)-2-heptenal (CH(3)(CH(2))(3)CH[double bond]CHCHO), a series of unsaturated aldehydes, over the temperature range 244-374 K at pressures between 23 and 150 Torr (He, N(2)) are reported. Rate coefficients were measured under pseudo-first-order conditions in OH with OH radicals produced via pulsed laser photolysis of HNO(3) or H(2)O(2) at 248 nm and detected by pulsed laser-induced fluorescence. The rate coefficients were independent of pressure and the room temperature rate coefficients and Arrhenius expressions obtained are (cm(3) molecule(-1) s(-1) units): k(1)(297 K)=(4.3 +/- 0.6)x 10(-11), k(1)(T)=(7.9 +/- 1.2)x 10(-12) exp[(510 +/- 20)/T]; k(2)(297 K)=(4.4 +/- 0.5)x 10(-11), k(2)(T)=(7.5 +/- 1.1)x 10(-12) exp[(520 +/- 30)/T]; and k(3)(297 K)=(4.4 +/- 0.7)x 10(-11), k(3)(T)=(9.7 +/- 1.5)x 10(-12) exp[(450 +/- 20)/T] for (E)-2-pentenal, (E)-2-hexenal and (E)-2-heptenal, respectively. The quoted uncertainties are 2sigma(95% confidence level) and include estimated systematic errors. Rate coefficients are compared with previously published room temperature values and the discrepancies are discussed. The atmospheric degradation of unsaturated aldehydes is also discussed.  相似文献   

4.
We report rate coefficients for the relaxation of OH(v=1) and OD(v=1) by H2O and D2O as a function of temperature between 251 and 390 K. All four rate coefficients exhibit a negative dependence on temperature. In Arrhenius form, the rate coefficients for relaxation (in units of 10(-12) cm3 molecule-1 s-1) can be expressed as: for OH(v=1)+H2O between 263 and 390 K: k=(2.4+/-0.9) exp((460+/-115)/T); for OH(v=1)+D2O between 256 and 371 K: k=(0.49+/-0.16) exp((610+/-90)/T); for OD(v=1)+H2O between 251 and 371 K: k=(0.92+/-0.16) exp((485+/-48)/T); for OD(v=1)+D2O between 253 and 366 K: k=(2.57+/-0.09) exp((342+/-10)/T). Rate coefficients at (297+/-1 K) are also reported for the relaxation of OH(v=2) by D2O and the relaxation of OD(v=2) by H2O and D2O. The results are discussed in terms of a mechanism involving the formation of hydrogen-bonded complexes in which intramolecular vibrational energy redistribution can occur at rates competitive with re-dissociation to the initial collision partners in their original vibrational states. New ab initio calculations on the H2O-HO system have been performed which, inter alia, yield vibrational frequencies for all four complexes: H2O-HO, D2O-HO, H2O-DO and D2O-DO. These data are then employed, adapting a formalism due to Troe (J. Troe, J. Chem. Phys., 1977, 66, 4758), in order to estimate the rates of intramolecular energy transfer from the OH (OD) vibration to other modes in the complexes in order to explain the measured relaxation rates-assuming that relaxation proceeds via the hydrogen-bonded complexes.  相似文献   

5.
The kinetics of the O + HCNO reaction were investigated by a relative rate technique using infrared diode laser absorption spectroscopy. Laser photolysis (355 nm) of NO2 was used to produce O atoms, followed by O atom reactions with CS2, NO2, and HCNO, and infrared detection of OCS product from the O + CS2 reaction. Analysis of the experiment data yields a rate constant of k1= (9.84 +/- 3.52) x 10-12 exp[(-195 +/- 120)/T)] (cm3 molecule-1 s-1) over the temperature range 298-375 K, with a value of k1 = (5.32 +/- 0.40) x 10-12 cm3 molecule-1 s-1 at 298 K. Infrared detection of product species indicates that CO producing channels, probably CO + NO + H, dominate the reaction.  相似文献   

6.
Rate coefficients for the gas-phase reactions of OH radicals with four unsaturated alcohols, 3-methyl-3-buten-1-ol (k1), 2-buten-1-ol (k2), 2-methyl-2-propen-1-ol (k3) and 3-buten-1-ol (k4), were measured using two different techniques, a conventional relative rate method and the pulsed laser photolysis-laser induced fluorescence technique. The Arrhenius rate coefficients (in units of cm(3) molecule(-1) s(-1)) over the temperature range 263-371 K were determined from the kinetic data obtained as k1 = (5.5 +/- 1.0) x 10(-12) exp [(836 +/- 54)/T]; k2 = (6.9 +/- 0.9) x 10(-12) exp [(744 +/- 40)/T]; k3 = (10 +/- 1) x 10(-12) exp [(652 +/- 27)/T]; and k4 = (4.0 +/- 0.4) x 10(-12) exp [(783 +/- 32)/T]. At 298 K, the rate coefficients obtained by the two methods for each of the alcohols studied were in good agreement. The results are presented and compared with those obtained previously for the same and related reactions of OH radicals. Reactivity factors for substituent groups containing the hydroxyl group are determined. The atmospheric implications for the studied alcohols are considered briefly.  相似文献   

7.
The kinetics and mechanism of oxidation of CF3CHFOCH3 was studied using an 11.5-dm3 environmental reaction chamber. OH radicals were produced by UV photolysis of an O3-H2O-He mixture at an initial pressure of 200 Torr in the chamber. The rate constant of the reaction of CF3CHFOCH3 with OH radicals (k1) was determined to be (1.77 +/- 0.69) x 10(-12) exp[(-720 +/- 110)/T] cm3 molecule(-1)(s-1) by means of a relative rate method at 253-328 K. The mechanism of the reaction was investigated by FT-IR spectroscopy at 298 K. CF3CHFOC(O)H, FC(O)OCH3, and COF2 were determined to be the major products. The branching ratio (k1a/k1b) for the reactions CF3CHFOCH3 + OH --> CF3CHFOCH2* + H2O (k1a) and CF3CHFOCH3 + OH --> CF3CF*OCH3 + H2O (k1b) was estimated to be 4.2:1 at 298 K from the yields of CF3CHFOC(O)H, FC(O)OCH3, and COF2. The rate constants of the reactions of CF3CHFOC(O)H (k2) and FC(O)OCH3 (k3) with OH radicals were determined to be (9.14 +/- 2.78) x 10(-13) exp[(-1190 +/- 90)/T] and (2.10 +/- 0.65) x 10(-13) exp[(-630 +/- 90)/T] cm3 molecule(-1)(s-1), respectively, by means of a relative rate method at 253-328 K. The rate constants at 298 K were as follows: k1 = (1.56 +/- 0.06) x 10-13, k2 = (1.67 +/- 0.05) x 10-14, and k3 = (2.53 +/- 0.07) x 10-14 cm3 molecule(-1)(s-1). The tropospheric lifetimes of CF3CHFOCH3, CF3CHFOC(O)H, and FC(O)OCH3 with respect to reaction with OH radicals were estimated to be 0.29, 3.2, and 1.8 years, respectively.  相似文献   

8.
The rate constants for the reaction OH + CH3C(O)OH --> products (1) were determined over the temperature range 287-802 K at 50 and 100 Torr of Ar or N2 bath gas using pulsed laser photolysis generation of OH by CH3C(O)OH photolysis at 193 nm coupled with OH detection by pulsed laser-induced fluorescence. The rate coefficient displays a complex temperature dependence with a sharp minimum at 530 K, indicating the competition between a reaction proceeding through a pre-reactive H-bonded complex to form CH3C(O)O + H2O, expected to prevail at low temperatures, and a direct methyl-H abstraction channel leading to CH2C(O)OH + H2O, which should dominate at high temperatures. The temperature dependence of the rate constant can be described adequately by k1(287-802 K) = 2.9 x 10(-9) exp{-6030 K/T} + 1.50 x 10(-13) exp{515 K/T} cm3 molecule(-1)(s-1), with a value of (8.5 +/- 0.9) x 10-13 cm3 molecule(-1)(s-1) at 298 K. The steep increase in rate constant in the range 550-800 K, which is reported for the first time, implies that direct abstraction of a methyl-H becomes the dominant pathway at temperatures greater than 550 K. However, the data indicates that up to about 800 K direct methyl-H abstraction remains adversely affected by the long-range H-bonding attraction between the approaching OH radical and the carboxyl -C(O)OH functionality.  相似文献   

9.
An experimental, temperature-dependent kinetics study of the gas-phase reactions of hydroxyl radical with n-propyl bromide, OH+n-C3H7Br-->products (reaction 1), and i-propyl bromide, OH+i-C3H7Br-->products (reaction 2), has been performed over wide ranges of temperatures 297-725 and 297-715 K, respectively, and at pressures between 6.67 and 26.76 kPa by a pulsed laser photolysis/pulsed laser-induced fluorescence technique. Data sets of absolute bimolecular rate coefficients obtained in this study for reactions 1 and 2 demonstrate no correlation with pressure and exhibit positive temperature dependencies that can be represented with modified three-parameter Arrhenius expressions within their corresponding experimental temperature ranges: k1(T)=(1.32x10(-17))T1.95 exp(+25/T) cm3 molecule(-1) s(-1) for reaction 1 and k2(T)=(1.56x10(-24))T4.18exp(+922/T) cm3 molecule(-1) s(-1) for reaction 2. The present results, which extend the current kinetics data base of reactions 1 and 2 to high temperatures, are compared with those from previous works. On the basis of the present data and available data from previous studies, the following bimolecular rate coefficient temperature dependencies can be recommended for the purpose of kinetic modeling: k1(T)=(1.89x10(-19))T2.54exp(+301/T) cm3 molecule-1 s-1 for reaction 1 in a temperature range 210-725 K, and k2(T)=(2.83x10(-21))T3.1exp(+521/T) cm3 molecule(-1) s(-1) and k2(T)=(4.54x10(-24))T4.03exp(+860/T) cm3 molecule(-1) s(-1) for reaction 2 in temperature ranges 210-480 and 297-715 K, respectively.  相似文献   

10.
Absolute rate data and product branching ratios for the reactions Cl + HO2 --> HCl + O2 (k1a) and Cl + HO2 --> OH + ClO (k1b) have been measured from 226 to 336 K at a total pressure of 1 Torr of helium using the discharge flow resonance fluorescence technique coupled with infrared diode laser spectroscopy. For kinetic measurements, pseudo-first-order conditions were used with both reagents in excess in separate experiments. HO2 was produced by two methods: through the termolecular reaction of H atoms with O2 and also by the reaction of F atoms with H2O2. Cl atoms were produced by a microwave discharge of Cl2 in He. HO2 radicals were converted to OH radicals prior to detection by resonance fluorescence at 308 nm. Cl atoms were detected directly at 138 nm also by resonance fluorescence. Measurement of the consumption of HO2 in excess Cl yielded k1a and measurement of the consumption of Cl in excess HO2 yielded the total rate coefficient, k1. Values of k1a and k1 derived from kinetic experiments expressed in Arrhenius form are (1.6 +/- 0.2) x 10(-11) exp[(249 +/- 34)/T] and (2.8 +/- 0.1) x 10(-11) exp[(123 +/- 15)/T] cm3 molecule(-1) s(-1), respectively. As the expression for k1 is only weakly temperature dependent, we report a temperature-independent value of k1 = (4.5 +/- 0.4) x 10(-11) cm3 molecule(-1) s(-1). Additionally, an Arrhenius expression for k1b can also be derived: k1b = (7.7 +/- 0.8) x 10(-11) exp[-(708 +/- 29)/T] cm3 molecule(-1) s(-1). These expressions for k1a and k1b are valid for 226 K < or = T < or = 336 and 256 K < or = T < or = 296 K, respectively. The cited errors are at the level of a single standard deviation. For the product measurements, an excess of Cl was added to known concentrations of HO2 and the reaction was allowed to reach completion. HCl product concentrations were determined by IR absorption yielding the ratio k1a/k1 over the temperature range 236 K < or = T < or = 296 K. OH product concentrations were determined by resonance fluorescence giving rise to the ratio k1b/k1 over the temperature range 226 K < or = T < or = 336 K. Both of these ratios were subsequently converted to absolute numbers. Values of k1a and k1b from the product experiments expressed in Arrhenius form are (1.5 +/- 0.1) x 10(-11) exp[(222 +/- 17)/T] and (10.6 +/- 1.5) x 10(-11) exp[-(733 +/- 41)/T] cm3 molecule(-1) s(-1), respectively. These expressions for k1a and k1b are valid for 256 K < or = T < or = 296 and 226 K < or = T < or = 336 K, respectively. A combination of the kinetic and product data results in the following Arrhenius expressions for k1a and k1b of (1.4 +/- 0.3) x 10(-11) exp[(269 +/- 58)/T] and (12.7 +/- 4.1) x 10(-11) exp[-(801 +/- 94)/T] cm3 molecule(-1) s(-1), respectively. Numerical simulations were used to check for interferences from secondary chemistry in both the kinetic and product experiments and also to quantify the losses incurred during the conversion process HO2 --> OH for detection purposes.  相似文献   

11.
Rate coefficients of the reaction O(3P)+C2H5OH in the temperature range 782-1410 K were determined using a diaphragmless shock tube. O atoms were generated by photolysis of SO2 at 193 nm with an ArF excimer laser; their concentrations were monitored via atomic resonance absorption. Our data in the range 886-1410 K are new. Combined with previous measurements at low temperature, rate coefficients determined for the temperature range 297-1410 K are represented by the following equation: k(T)=(2.89+/-0.09)x10(-16)T1.62 exp[-(1210+/-90)/T] cm3 molecule(-1) s(-1); listed errors represent one standard deviation in fitting. Theoretical calculations at the CCSD(T)/6-311+G(3df, 2p)//B3LYP/6-311+G(3df) level predict potential energies of various reaction paths. Rate coefficients are predicted with the canonical variational transition state (CVT) theory with the small curvature tunneling correction (SCT) method. Reaction paths associated with trans and gauche conformations are both identified. Predicted total rate coefficients, 1.60 x 10(-22)T3.50 exp(16/T) cm3 molecule(-1) s(-1) for the range 300-3000 K, agree satisfactorily with experimental observations. The branching ratios of three accessible reaction channels forming CH3CHOH+OH (1a), CH2CH2OH+OH (1b), and CH3CH2O+OH (1c) are predicted to vary distinctively with temperature. Below 500 K, reaction 1a is the predominant path; the branching ratios of reactions 1b,c become approximately 40% and approximately 11%, respectively, at 2000 K.  相似文献   

12.
The kinetics of the reactions of OH with acetic acid, acetic acid-d3 and acetic acid-d4 were studied from 2 to 5 Torr and 263-373 K using a discharge flow system with resonance fluorescence detection of the OH radical. The measured rate constants at 300 K for the reaction of OH with acetic acid and acetic acid-d4 (CD3C(O)OD) were (7.42+/-0.12)x10(-13) and (1.09+/-0.18)x10(-13) cm3 molecule-1 s-1 respectively, and the rate constant for the reaction of OH with acetic acid-d3 (CD3C(O)OH) was (7.79+/-0.16)x10(-13) cm3 molecule-1 s-1. These results suggest that the primary mechanism for this reaction involves abstraction of the acidic hydrogen. Theoretical calculations of the kinetic isotope effect as a function of temperature are in good agreement with the experimental measurements using a mechanism involving the abstraction of the acidic hydrogen through a hydrogen-bonded complex. The rate constants for the OH+acetic acid and OH+acetic acid-d4 reactions display a negative temperature dependence described by the Arrhenius equations kH(T)=(2.52+/-1.22)x10(-14) exp((1010+/-150)/T) and kD(T)=(4.62+/-1.33)x10(-16) exp((1640+/-160)/T) cm3 molecule-1 s-1 for acetic acid and acetic acid-d4, respectively, consistent with recent measurements that suggest that the lifetime of acetic acid at the low temperatures of the upper troposphere is shorter than previously believed.  相似文献   

13.
Rate coefficients for the gas-phase reaction of hydroxyl (OH) radicals with dimethyl sulfide (CH(3)SCH(3), DMS) have been determined using a relative rate technique. The experiments were performed under different conditions of temperature (250-299 K) and O(2) partial pressure (approximately 0 Torr O(2)-380 Torr O(2)), at a total pressure of 760 Torr bath gas (N(2) + O(2)), in a 336 l reaction chamber, using long path in situ Fourier transform (FTIR) absorption spectroscopy to monitor the disappearance rates of DMS and the reference compounds (ethene, propene and 2-methylpropene). OH was produced by the photolysis of H(2)O(2). The following Arrhenius expressions adequately describe the rate coefficients as a function of temperature (units are cm(3) molecule(-1) s(-1)): k = (1.56 +/- 0.20) x 10(-12) exp[(369 +/- 27)/T], for approximately 0 Torr O(2); (1.31 +/- 0.08) x 10(-14) exp[(1910 +/- 69)/T], for 155 Torr O(2); (5.18 +/- 0.71) x 10(-14) exp[(1587 +/- 24)/T], for 380 Torr O(2). The results are compared with previous investigations.  相似文献   

14.
The kinetics of the OH + HCNO reaction was studied. The total rate constant was measured by LIF detection of OH using two different OH precursors, both of which gave identical results. We obtain k = (2.69 +/- 0.41) x 10(-12) exp[(750.2 +/- 49.8)/T] cm(3) molecule(-1) s(-1) over the temperature range 298-386 K, with a value of k = (3.39 +/- 0.3) x 10(-11) cm(3) molecule(-1) s(-1) at 296 K. CO, H(2)CO, NO, and HNO products were detected using infrared laser absorption spectroscopy. On the basis of these measurements, we conclude that CO + H(2)NO and HNO + HCO are the major product channels, with a minor contribution from H(2)CO + NO.  相似文献   

15.
Rate coefficients, k, for the gas-phase reaction of the OH radical with (Z)-CF(3)CH═CHCF(3) (cis-1,1,1,4,4,4-hexafluoro-2-butene) were measured under pseudo-first-order conditions in OH using pulsed laser photolysis (PLP) to produce OH and laser-induced fluorescence (LIF) to detect it. Rate coefficients were measured over a range of temperatures (212-374 K) and bath gas pressures (20-200 Torr; He, N(2)) and found to be independent of pressure over this range of conditions. The rate coefficient has a non-Arrhenius behavior that is well-described by the expression k(1)(T) = (5.73 ± 0.60) × 10(-19) × T(2) × exp[(678 ± 10)/T] cm(3) molecule(-1) s(-1) where k(1)(296 K) was measured to be (4.91 ± 0.50) × 10(-13) cm(3) molecule(-1) s(-1) and the uncertainties are at the 2σ level and include estimated systematic errors. Rate coefficients for the analogous OD radical reaction were determined over a range of temperatures (262-374 K) at 100 Torr (He) to be k(2)(T) = (4.81 ± 0.20) × 10(-19) × T(2) × exp[(776 ± 15)/T], with k(2)(296 K) = (5.73 ± 0.50) × 10(-13) cm(3) molecule(-1) s(-1). OH radical rate coefficients were also measured at 296, 345, and 375 K using a relative rate technique and found to be in good agreement with the PLP-LIF results. A room-temperature rate coefficient for the O(3) + (Z)-CF(3)CH═CHCF(3) reaction was measured using an absolute method with O(3) in excess to be <6 × 10(-21) cm(3) molecule(-1) s(-1). The atmospheric lifetime of (Z)-CF(3)CH═CHCF(3) due to loss by OH reaction was estimated to be ~20 days. Infrared absorption spectra of (Z)-CF(3)CH═CHCF(3) measured in this work were used to determine a (Z)-CF(3)CH═CHCF(3) global warming potential (GWP) of ~9 for the 100 year time horizon. A comparison of the OH reactivity of (Z)-CF(3)CH═CHCF(3) with other unsaturated fluorinated compounds is presented.  相似文献   

16.
The reaction S(3P)+OCS in Ar was investigated over the pressure range of 50-710 Torr and the temperature range of 298-985 K with the laser photolysis technique. S atoms were generated by photolysis of OCS with light at 248 nm from a KrF excimer laser; their concentration was monitored via resonance fluorescence excited by atomic emission of S produced from microwave-discharged SO2. At pressures less than 250 Torr, our measurements give k(298 K)=(2.7+/-0.5)x10(-15) cm3 molecule-1 s-1, in satisfactory agreement with a previous report by Klemm and Davis [J. Phys. Chem. 78, 1137 (1974)]. New data determined for 407-985 K connect rate coefficients reported previously for T>or=860 and Tor=500 Torr, the reaction rate was enhanced. Theoretical calculations at the G2M(CC2) level, using geometries optimized with the B3LYP6-311+G(3df) method, yield energies of transition states and products relative to those of the reactants. Rate coefficients predicted with multichannel Rice-Ramsperger-Kassel-Marcus (RRKM) calculations agree satisfactorily with experimental observations. According to our calculations, the singlet channel involving formation of SSCO followed by direct dissociation into S2(a 1Deltag)+CO dominates below 2000 K; SSCO is formed via intersystem crossing from the triplet surface. At low temperature and under high pressure the stabilization of OCS2, formed via isomerization of SSCO, becomes important; its formation and further reaction with S atoms partially account for the observed increase in the rate coefficient under such conditions.  相似文献   

17.
The kinetics of the reaction OIO+NO were studied by pulsed laser photolysis/time-resolved cavity ring-down spectroscopy, yielding k(235-320 K)=7.6(+4.0)(-3.1) x 10(-13) exp[(607+/-128)/T] cm3 molecule-1 s-1. Quantum calculations on the OIO+NO potential-energy surface show that the reactants form a weakly bound OIONO intermediate, which then dissociates to the products IO+NO2. Rice-Ramsberger-Kassel-Markus (RRKM) calculations on this surface are in good accord with the experimental result. The most stable potential product, IONO2, cannot form because of the significant rearrangement of OIONO that would be required. The reaction OIO+OH was then investigated by quantum calculations of the relevant stationary points on its potential-energy surface. The very stable HOIO2 molecule can form by direct recombination, but the bimolecular reaction channels to HO2+IO and HOI+O2 are closed because of significant energy barriers. RRKM calculations of the HOIO2 recombination rate coefficient yield krec,0=1.5x10(-27) (T/300 K)(-3.93) cm6 molecule-2 s-1, krec,infinity=5.5x10(-10) exp(46/T) cm3 molecule-1 s-1, and Fc=0.30. The rate coefficients of both reactions are fast enough around 290 K and 1 atm pressure for these reactions to play a potentially important role in the gas phase and aerosol chemistry in the marine boundary layer of the atmosphere.  相似文献   

18.
Rate coefficients of the reaction O((3)P) + CH(3)OH in the temperature range of 835-1777 K were determined using a diaphragmless shock tube. O atoms were generated by photolysis of SO(2) with a KrF excimer laser at 248 nm or an ArF excimer laser at 193 nm; their concentrations were monitored via atomic resonance absorption excited by emission from a microwave-discharged mixture of O(2) and He. The rate coefficients determined for the temperature range can be represented by the Arrhenius equation, k(T) = (2.29 +/- 0.18) x 10(-10) exp[-(4210 +/- 100)T] cm(3) molecule(-1) s(-1); unless otherwise noted, all the listed errors represent one standard deviation in fitting. Combination of these and previous data at lower temperature shows a non-Arrhenius behavior described as the three-parameter equation, k(T) = (2.74 +/- 0.07) x 10(-18)T(2.25 +/- 0.13) exp[-(1500 +/- 90)T] cm(3)molecule(-1) s(-1). Theoretical calculations at the Becke-3-Lee-Yang-Parr (B3LYP)6-311 + G(3df,2p) level locate three transition states. Based on the energies computed with coupled clusters singles, doubles (triples) [CCSD(T)]/6-311 + G(3df,2p)B3LYP6-311 + G(3df,2p), the rate coefficients predicted with canonical variational transition state theory with small curvature tunneling corrections agree satisfactorily with the experimental observations. The branching ratios of two accessible reaction channels forming OH + CH(2)OH (1a) and OH + CH(3)O (1b) are predicted to vary strongly with temperature. At 300 K, reaction (1a) dominates, whereas reaction (1b) becomes more important than reaction (1a) above 1700 K.  相似文献   

19.
20.
The reflected shock tube technique with multipass absorption spectrometric detection of OH radicals at 308 nm has been used to study the reactions OH + CH(4) --> CH(3) + H(2)O and CH(3) + NO(2) --> CH(3)O + NO. Over the temperature range 840-2025 K, the rate constants for the first reaction can be represented by the Arrhenius expression k = (9.52 +/- 1.62) x 10(-11) exp[(-4134 +/- 222 K)/T] cm(3) molecule(-1) s(-1). Since this reaction is important in both combustion and atmospheric chemistry, there have been many prior investigations with a variety of techniques. The present results extend the temperature range by 500 K and have been combined with the most accurate earlier studies to derive an evaluation over the extended temperature range 195-2025 K. A three-parameter expression describes the rate behavior over this temperature range, k = (1.66 x 10(-18))T(2.182) exp[(-1231 K)/T] cm(3) molecule(-1) s(-1). Previous theoretical studies are discussed, and the present evaluation is compared to earlier theoretical estimates. Since CH(3) radicals are a product of the reaction and could cause secondary perturbations in rate constant determinations, the second reaction was studied by OH radical production from the fast reactions CH(3)O --> CH(2)O + H and H + NO(2) --> OH + NO. The measured rate constant is 2.26 x 10(-11) cm(3) molecule(-1) s(-1) and is not dependent on temperature from 233 to 1700 K within experimental error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号