首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Molecular aggregation in polytrimellitamideimide (PAI) was investigated by small-angle x-ray scattering (SAXS). PAI films annealed above the glass transition temperature show a scattering peak characteristic of two-phase structure. A one-dimensional model was used to analyze these SAXS curves. The more ordered phases are produced at higher annealing temperature. The average thickness of the ordered lamellae is comparable with the repeating length of the main chain. The relative difference of electron density between two phases is only a few percent, which shows that the two-phase structure of PAI, like that of aromatic polyimide, differs essentially from that of ordinary crystalline polymers.  相似文献   

2.
Molecular aggregation of the aromatic polyimide poly(4,4′-oxydiphenylene-pyromellitimide) is influenced by the initial imidization temperature and by cold drawing. The effect of molecular aggregation in polyimides on their mechanical properties has been investigated. The density of a polyimide in which molecular aggregation gives an amorphous state is increased slightly by cold drawing. On the other hand, if molecular aggregation leads to a heterogeneous two-phase structure, the density is decreased by cold drawing. With increasing initial imidization temperature, the α absorption peak in dynamic tensile measurements becomes broader and smaller, and shifts to a higher temperature. From analysis of correlations between molecular aggregation and mechanical properties, it is concluded that the mode of molecular motion corresponding to the α dispersion in polyimide is a long-range cooperative motion of the main chain which is associated with the glass transition.  相似文献   

3.
Molecular aggregation of Kapton H (KH) was investigated by small-angle x-ray scattering (SAXS). Superstructure parameters were estimated using a one-dimensional model, taking into account that the SAXS from KH is anisotropic out of the film plane. The results show that KH has a two-phase structure with a volume ratio of the ordered to the less-ordered phase of about 1:1. The β dispersion in dynamic mechanical properties is reasonably ascribed to oscillations of p-phenylene groups in the main chain.  相似文献   

4.
Crosslinking behavior of internal acetylene units linked para to the aromatic rings was investigated by preparing polyimide from 4,4′-diaminodiphenylacetylene (p-intA) and 2,2′-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA). Polyimide was also prepared from 1,4-phenylenediamine (PDA) and 6FDA for comparison. The polymers were moderately to highly viscous at the stage of polyamide acid. Thermal imidization gave polyimide having acetylene units that are linked para to the aromatic connecting units. Differential scanning calorimetry (DSC) measurement of the polymer revealed that exotherm due to the crosslinking of the acetylene unit appeared at ca. 330°C. After thermal treatment at high temperature such as 350 and 400°C, onset of the exotherm shifted to higher temperature and the amount of the exotherm became smaller. The dynamic mechanical properties of the uncrosslinked polyimide film treated at 250°C had a glass transition temperature (Tg) at 330°C with a considerable drop in the storage modulus at this temperature. After the film was exposed to a higher temperature to induce crosslinking, the Tg was observed to increase to above 400°C and the storage modulus was maintained to higher temperatures. Tensile properties of the polyimide showed that the films had good mechanical properties. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
以4,4'-对苯二甲酰二邻苯二甲酸酐(TDPA)为芳二酐单体,对苯二胺(PPD)为芳二胺单体,经低温溶液缩聚制得成膜性能优良的高相对分子质量聚酰胺酸(PAA),再经过热亚胺化制备双酮酐型聚酰亚胺(PI)薄膜。 采用傅里叶变换红外光谱仪(FT-IR)、广角X射线衍射(WAXD)、差示扫描量热仪(DSC)、动态热机械分析仪(DMA)、热重分析仪(TGA)、紫外-可见分光光度计(UV-Vis)及力学性能等技术手段表征了聚酰亚胺膜的结构和性能,考察了不同亚胺化温度对合成的双酮酐型聚酰亚胺膜性能的影响。 结果表明,经程序升温至320 ℃能使PAA热亚胺化基本趋于完成。 PI薄膜为部分有序聚集态结构,玻璃化转变温度(Tg)为298 ℃,具有优异的热性能,热失重温度(T5%)为523 ℃。 拉伸强度达到130 MPa,弹性模量为5.77 GPa。 PI薄膜紫外光透过截止波长为375 nm,在可见光区具有良好的透光性能及耐溶剂性能。  相似文献   

6.
以4,4′-二氨基二苯硫醚(SDA)和均苯四酸酐(PMDA)为原料,通过溶液缩聚法-热酰亚胺/化学酰亚胺化的方法制备了一种含硫醚结构均苯型聚酰亚胺.利用高级旋转流变仪建立了在线跟踪反应进程的方法,采用热失重分析仪研究反应条件对热酰亚胺化及化学酰亚胺化法的影响,这些方法的建立为进一步制备高性能的聚酰亚胺提供有效的实验手段.采用小角激光光散射法、红外光谱、元素分析、接触角仪、DSC等方法对聚合物的结构与性能进行表征.结果显示,硫醚结构的引入,可有效改善聚合物薄膜的表面性能,其与铜箔之间的粘附功明显大于传统聚酰亚胺,在无胶挠性线路板应用方面显示出较好的应用前景.所获聚合物的Mw为(6.7±1.6)×104,分解温度均高于560℃;DSC的结果显示所制备的两种酰亚胺化聚合物均具有较高的玻璃化转变温度,相比之下,化学酰亚胺化更有利于获得高酰亚胺化程度的聚合物,产物的玻璃化转变温度也更高.  相似文献   

7.
Controlling the chain orientation of polyimide is important because it affects the physical and electrical properties of the film. When a polyimide film is thick, the chain orientation has an inhomogeneous distribution along the thickness direction. In this study, poly(amic acids), the precursor of polyimide, with different coating thicknesses are dried, and the distribution of chain orientation in the thickness direction is investigated by measuring the residual solvent content with Raman spectroscopy. The effect of film thickness on the imidization rate is also studied by measuring the depth‐wise degree of imidization at the curing step. With the final cured polyimide film, the depth‐wise chain orientation is quantified by introducing the Fraser distribution function using polarized Raman spectroscopy. The thicker film has a lower degree of in‐plane orientation of polyimide chains, particularly near the substrate. This distribution of polyimide chain orientation in the thickness direction is similar to that of poly(amic acid) after drying. Fast imidization with higher solvent content for thick polyimide retards the formation of a well‐ordered structure with a high degree of in‐plane orientation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 848–857  相似文献   

8.
A soluble poly(amic acid) precursor solution of fully rod-like poly(p-phenylene pyromellitimide) (PMDA-PDA) was spin cast on silicon substrates, followed by soft bake at 80–185°C and subsequent thermal imidization at various conditions over 185–400°C in nitrogen atmosphere to be converted to the polyimide in films. Residual stress generated at the interface was measured in situ during imidization. In addition, the imidized films were characterized in the aspect of polymer chain orientation and ordering by prism coupling and X-ray diffraction. The soft-baked precursor film revealed a residual stress of 16–28 MPa at room temperature, depending on the soft bake condition: higher temperature and longer time in the soft bake gave higher residual stress. The stress variation in the soft-baked precursor film was not significantly reflected in the final stress in the resultant polyimide film. However, the residual stress in the polyimide film varied sensitively with variations in imidization process parameters, such as imidization temperature, imidization steps, heating rate, and film thickness. The polyimide film exhibited a wide range of residual stress, −7 MPa to 8 MPa at room temperature, depending on the imidization condition. Both rapid imidization and low-temperature imidization generated high stress in the tension mode in the polyimide film, whereas slow imidization as well as high temperature imidization gave high stress in the compression mode. Thus, a moderate imidization condition, a single- or two-step imidization at 300°C for 2 h with a heating rate of < 10 K/min was proposed to give a relatively low stress in the polyimide film of < 10 μm thickness. However, once a precursor film was thermally imidized at a chosen process condition, the residual stress–temperature profile was insensitive to variations in the cooling process. All the films imidized were optically anisotropic, regardless of the imidization history, indicating that rod-like PMDA-PDA polyimide chains were preferentially aligned in the film plane. However, its degree of in-plane chain orientation varied on the imidization history. It is directly correlated to the residual stress in the film, which is an in-plane characteristic. For films with residual stress in the tension mode, higher stress films exhibited lower out-of-plane birefringence, that is, lower in-plane chain orienta-tion. In contrast, in the compression mode, higher stress films showed higher in-plane chain orientation. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1261–1273, 1998  相似文献   

9.
Two thermoplastic polyimides based on a common diamine (3,4′-ODA) were synthesized using different dianhydrides, namely ODPA and BPDA by a two step method. Molecular weight was controlled by using PA as an end capping agent. Effects of imidization degree on the mechanical properties and viscoelastic behavior of thermoplastic polyimide films were investigated. Film samples with varying degrees of imidization were characterized using FTIR, DMTA and tensile properties testing. It was found that two polyimides have different rates of imidization because of difference in monomer reactivity and molecular structure. It was observed that with an increase in imidization degree there was a decrease in thermoplastic response and a change in viscoelastic behavior from liquid-like to solid-like. With increase in imidization degree the tensile modulus and tensile strength of the films were increased, whereas elongation at break and tensile breaking energy were found to decrease after a certain imidization temperature.  相似文献   

10.
An aromatic polyimide oligomer, poly(1,4-phenyleneoxy-1,3-phenylene pyromellitimide) (PMDA-3,4'-ODA), was synthesized from pyromellitic dianhydride (PMDA) and 3,4'-oxydianiline (3,4'-ODA) via a melt-polymerization method. This method permits growth of PMDA-3,4'-ODA lamellar crystals and the crystal structure can be studied via electron diffraction (ED) and wide-angle x-ray diffraction (WAXD) experiments. Our structure analysis indicates that this polyimide possesses a two-chain orthorhombic crystal lattice with dimensions of a = 0.848, b = 0.562, and c = 3.365 nm. It has also been found that poly(amic acid) precursors with little imidization possess the same ab lateral lattice packing, but statistical departure from the ordered packing along the c-direction. Upon increasing the degree of imidization through annealing at elevated temperatures, the order along the c-axis was progressively enhanced. Increasing the annealing temperature caused the dimensions of the a- and the b-axes to expand while the crystal correlation lengths decreased laterally. Simultaneously the dimension of the c-axis shrinks with an increase of the crystal correlation length along the chain direction. Crystal morphological study via transmission electron microscopy (TEM) indicates a mainly lamellar crystal texture with different thicknesses depending upon the polymerization conditions. The end lamellar surface is usually smooth. After annealing at elevated temperatures, the lamellar end surfaces become rough, which may be due to chain motion along the c-axis. The annealed PMDA-3,4'-ODA lamellar crystals still show a large amount of defects. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
4,4′-Diaminodiphenylacetylene (p-intA) was reacted with 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA), 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and pyromellitic dianhydride (PMDA) in N-methyl-2-pyrrolidone (NMP) to give poly(amic acid) solution of moderate to high viscosity. Thermal imidization gave polyimide having acetylene units that are linked para to the aromatic connecting unit. Polyimide having acetylene units that are linked meta to the aromatic connecting unit also was prepared utilizing 3,3′-diaminodiphenylacetylene (m-intA) for comparison. The crosslinking behavior of the acetylene units was observed with DSC. Exotherm due to the crosslinking of the para-linked acetylene units appeared at ca. 340 to 380°C depending on the structure of polyimide, whereas meta-linked acetylene units appeared at lower temperature as 340–350°C. After thermal treatment at high temperature such as 350 or 400°C, the amount of the exotherm became smaller and finally disappeared on DSC, confirming the progress of crosslinking. Dynamic mechanical properties of the polyimide films show that glass transition temperature increased with higher heat treatment, also confirming the progress of crosslinking. Tensile properties of the polyimide films showed that rigid polyimide films consisting of p-intA with BPDA or PMDA have considerably higher modulus than those consisting of m-intA. Cold-drawing of the poly(amic acid) followed by imidization gave much higher modulus in the case of rigid polyimide. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2395–2402, 1997  相似文献   

12.
A novel method for the preparation of ultrathin films of aromatic polyimides was developed through vapor deposition polymerization from combinations of monomer pairs of either N,N′-bis (trimethylsilyl)-substituted aromatic diamines and pyromellitic dianhydride or aromatic diamines and pyromellitic dithioanhydride. Both diamine component and tetracarboxylic dianhydride component were evaporated simultaneously at a stoichiometric molar ratio under vacuum, giving a deposited film on a substrate, which consisted of a polyamic acid derivative formed by the ring-opening polyaddition. The deposit was then converted to polyimide by thermal imidization at a relatively lower temperature, compared with a conventional method using the parent diamine and tetracarboxylic dianhydride. The properties of polyimide ultrathin films such as thermal stability, chemical resistance, and dielectric behavior were almost the same as those of the polyimide films prepared by a conventional method.  相似文献   

13.
Co‐polyimide (co‐PI) fibers with outstanding mechanical properties were fabricated via thermal imidization of polyamic acids, derived from a new design of combining the amide and benzimidazole diamine monomers, 4‐amino‐N‐(4‐aminophenyl)benzamide (DABA) and 2‐(4‐aminophenyl)‐5‐aminobenzimidazole (BIA), with 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA). The crystalline structure and micromorphology of the prepared co‐PI fibers were investigated by synchrotron wide‐angle X‐ray diffraction (WAXD) and small‐angle X‐ray scattering (SAXS). The two‐dimensional WAXD spectra imply that the co‐PI fibers possess a structure between smectic‐like and three‐dimensionally ordered crystalline phase, and all the obtained fibers are highly oriented along the fiber axis. SAXS patterns exhibit a pair of meridional scattering streaks for the homo‐PI (BPDA/BIA) fiber, suggesting the presence of periodic lamellar structure. The incorporation of DABA into the polymer chains destroyed the lamellar structure but led to smaller size of microvoids upon increasing DABA moiety, based on SAXS analysis. The co‐PI fibers, with the molar ratio of BIA/DABA being 7/3, exhibited the optimum tensile strength and modulus of 1.96 and 108.3 GPa, respectively, attributed to the well‐defined ordered and dense structure. The chemical structure and molecular packing significantly affected the thermal stability of fibers, resulting in the different glass transition temperatures (Tg) from 350 to 380 °C. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 183–191  相似文献   

14.
The aggregation structure of a novel polyimide ( PIM ‐ 6 ) with six methylene flexible spacing groups in biphenyl side chain synthesized by the traditional two‐step imidisation process was investigated by polarized light microscope (PLM), small angle X‐ray scattering (SAXS), wide angle X‐ray scattering (WAXS), and molecular simulation approach. The agreement between the experimental data and simulation result reveals that due to the predominant interchain interaction, each three backbones stack together to form a distinct lamellar cluster with side chains packed inside dispersedly. The thickness of the lamellar cluster is about 16.0 A°, corresponding to a strong peak at 5.5° in SAXS pattern. As the backbone is not perfectly parallel to each other in each lamellar cluster, the distance between each backbone ranges from 5.8 to 8.8 A° possibly relating to the weak peak at 9.8° in WAXS pattern. Meanwhile, no birefringence or apparent phase texture has been observed by PLM indicating an amorphous nature in this film. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

15.
Free‐standing polyimide films are manufactured by the chemical imidization of linear, soluble polymeric precursors. The reactive solution is coated onto a heated substrate, peeled off after partial imidization, and then dried and cured as a free‐standing film. Adhesive bonds to the cast side of the final film more strongly than to the air side. Near‐surface elastic moduli of film samples were measured with a nanoindentation setup. Samples were annealed at different final temperatures. The air side of the samples annealed at 400 °C had a higher modulus of 1.4 GPa than the 0.8 GPa of the casting side. This difference diminished as the annealing temperature was raised to 460 °C. Polyamic acid and polyimide exhibit phase transitions from disordered, isotropic solutions to ordered, liquid‐crystalline states. A theoretical model of drying and curing demonstrates formation of a gradient in conversion and ordering: the air side vitrifies at a lower solvent content, lower conversion, and higher ordering; the casting side, at a greater solvent content, higher conversion, and less ordering. Subsequent high‐temperature drying and curing of the free‐standing films removes solvent, completes reaction, and nematically orders both sides. However, longer times and higher temperature annealing are needed to bring the two sides to their common equilibrium state of nematic order. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1824–1838, 2001  相似文献   

16.
Statistical ensembles of microdomains formed on the surface of polyimide films based on pyromellitic dianhydride and 2,7-diaminofluorene during thermal imidization were described in terms of the model of reversible aggregation using the electron-microscopic data. Parameters of the statistical distribution were determined for each ensemble depending on the film heating temperature.  相似文献   

17.
Sorption and transport of CO2 have been investigated for polyimide films prepared from 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA) and 4,4′-oxydianilline (ODA) as well as for a chemically identical commercial polyimide film, Upilex-R. The BPDA-ODA polyimide films annealed above the glass transition temperature (270°C) are found to have some degree of ordering owing to molecular aggregation of polymer chains, whereas the films as-cast are amorphous. The solubility, permeability, and diffusion coefficients decrease significantly with increasing density or increasing average degree of molecular aggregation. The influence of morphology on the parameters in the dual-mode sorption and transport model has also been investigated. With an increase in density, the Langmuir capacity constant and the diffusion coefficients for Henry's law and Langmuir populations decrease by a larger factor than the Henry's law solubility constant. These results can be tentatively interpreted by assuming either a one-phase or two-phase structure for these polyimide films.  相似文献   

18.
Following previous work, a fluorinated polyimide with a rod‐like structure has been investigated as an in‐plane birefringent optical material whose birefringence and thickness can be precisely controlled. Poly(amic acid) films fixed in a metal frame by two sides and thermally cured without any drawing resulted in a polyimide film with an in‐plane birefringence (Δn) larger than 0.1 at 1543 nm. The optical retardation, which is defined as the product of Δn and the film thickness, was controlled by varying the curing and post‐annealing temperatures and by using reactive ion etching. In situ measurements of the tensile stress and the generated retardation showed that the initial orientation at below 200°C was due to the large tensile stress caused by the film shrinkage during imidization and that the increased Δn at higher temperatures was caused by the spontaneous orientation of the polyimide molecules. The curing temperature dependence of refractive indices, optical transmittance in the visible and near‐infrared region, and the wavelength dispersion of retardation of the in‐plane birefringent polyimide films are also reported. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
Thermally stable ordered films were prepared by in-situ photopolymerization of an oriented monomer mixture, consisting of mesogenic monofunctional and bifunctional vinyl ethers. Orientation was achieved by a simple surface treatment, using an unidirectionally rubbed polyimide film. The films restored their orientation when cooled down from temperatures of 200°C. Highly ordered densely crosslinked films have been prepared by polymerization of bifunctional mesogenic vinyl ether monomers. Polymerization from various monomer phases resulted in LC polymer network films with different molecular organizations. It was shown that films with nematic, smectic A and smectic B structures were obtained, the latter having a very high degree of orientation. The films were analyzed with small-angle X-ray scattering, polarized light microscopy and infrared- dichroism measurements.  相似文献   

20.
As a nondestructive method of evaluation, we have used integrated optics to investigate thin films (<8 μm) of polyamic acid and polyimide as a function of molecular weight, initial imidization temperature, method of imidization, and annealing treatment. Polyamic acid films were found to exhibit a large optical anisotropy, indicating preferential alignment of the long axis of the molecule in the plane of the film. Imidization increased the birefringence of the film by a factor of 2.5 and reduced the film thickness. The only parameter that was found to effect the anisotropy of the films was the method of imidization. Chemical imidization was found to increase the birefringence by a factor of 3, indicative of a higher degree of molecular orientation parallel to the film surface. This effect was not observed in thicker (>25-μm) films using x-ray diffraction where the orientation function was found to be independent of the method of imidization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号