首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 819 毫秒
1.
The dissociative spectrum of the [C6H5S]+ ion derived by charge inversion from [C6H5S]?, shows a variety of fragmentations including the competitive losses of H?, C3H4 and the formation of [CHS]+. The spectrum of a deuteriated derivative shows that these three processes are preceded or accompanied by H/D scrambling. The corresponding [C6H5O]+ species also undergoes hydrogen scrambling prior to fragmentation. In marked contrast, the ion [p-MeC6H4S]+ does not undergo hydrogen randomization between the methyl and aryl groups, and positional integrity is retained during fragmentation. These results are compared with the properties of the same ions produced by conventional ionization.  相似文献   

2.
Mass-analysed ion kinetic energy spectrometry (MIKES) with collision-induced dissociation (CID) has been used to study the fragmentation processes of a series of deuterated 2,4,6-trinitrotoluene (TNT) and deuterated 2,4,6-trinitrobenzylchloride (TNTCI) derivatives. Typical fragment ions observed in both groups were due to loss of OR′ (R′ = H or D) and NO. In TNT, additional fragment ibns are due to the loss of R2′O and 3NO2, whilst in TNTCI fragment ions are formed by the loss of OCI and R2′OCI. The TNTCI derivatives did not produce molecular ions. In chemical ionization (Cl) of both groups. MH+ ions were observed, with [M – OR′]+ fragments in TNT and [M – OCI]+ fragments in TNTCI. In negative chemical ionization (NCI) TNT derivatives produced M?′, [M–R′]?, [M–OR′]? and [M–NO]? ions, while TNTCI derivatives produced [M–R]?, [M–Cl]? and [M – NO2]? fragment ions without a molecular ion.  相似文献   

3.
Mass spectra from collisionally activated dissociation (CAD) of [C2H3O]+ ions, including isotopically labeled analogs, provide further information on the isomers [CH3C?O+] (a), [CH2?C?O+H] (b), [+CH2CH?O] (c) and (d). Our data generally support the recent conclusions from theory by Radom and coworkers and from experiment by Terlouw, Holmes and coworkers. Most acetyl-containing molecular ions form a ions in high purity only at low energies, consistent with isomerization of higher energy molecular ions to form the more stable enol which dissociates to b. Isomer d, prepared from (CICH2)2CHOH, undergoes facile hydrogen scrambling, presumably through a degenerate 1,2-hydrogen shift. Theory suggests that c undergoes spontaneous isomerization to a and d; although [C2H3O]+ ions from BrCH2CHO appear to consist of a and ~15% d, the latter are formed without substantial hydrogen scrambling.  相似文献   

4.
Ab initio molecular orbital calculations with moderately large polarization basis sets and including valence-electron correlation have been used to examine the structure and dissociation mechanisms of protonated methanol [CH3OH2]+. Stable isomers and transition structures have been characterized using gradient techniques. Protonated methanol is found to be the only stable isomer in the [CH5O]+ potential surface. There is no evidence for a tightly-bound complex, [HOCH2]+…?H2, analogous to the preferred structure [CH3]+…?H2 of [CH5]+. Protonated methanol is found to possess a pyramidal arrangement of bonds at the oxygen atom with a barrier to inversion of 8kJ mol?1. The lowest energy fragmentation pathways are dissociation into methyl cation and water (predicted to require 284 kJ mol?1 with zero reverse activation energy) and loss of molecular hydrogen (endothermic by 138 kJ mol?1 but with a reverse activation barrier of 149 kJ mol?1). The results offer a possible explanation as to why production of [CH2OH]+ from the reaction of methyl cation with water is not observed. Other dissociation processes examined include loss of a hydrogen atom to yield the methylenoxonium radical cation or methanol radical cation (requiring 441 and 490 kJ mol?1, respectively) and loss of a proton to yield neutral methanol (requiring 784 kJ mol?1).  相似文献   

5.
The mutual interconversion of the molecular ions [C5H6O]+ of 2-methylfuran (1), 3-methylfuran (2) and 4H-pyran (3) before fragmentation to [C5H5O]+ ions has been studied by collisional activation spectrometry, by deuterium labelling, by the kinetic energy release during the fragmentation, by appearance energles and by a MNDO calculation of the minimum energy reaction path. The electron impact and collisional activation mass spectra show clearly that the molecular ions of 1–3 do not equilibrate prior to fragmentation, but that mostly pyrylium ions [C5H5O]+ arise by the loss of a H atom. This implies an irreversible isomerization of methylfuran ions 1 and 2 into pyran ions before fragmentation, in contrast to the isomerization of the related systems toluene ions/cycloheptatriene ions. Complete H/D scrambling is observed in deuterated methylfuran ions prior to the H/D loss that is associated with an iostope effect kH/kD = 1.67–2.16 for metastable ions. In contrast, no H/D scrambling has been observed in deuterated 4H-pyran ions. However, the loss of a H atom from all metastable [C5H5O]+ ions gives rise to a flat-topped peak in the mass-analysed ion kinetic energy spectrum and a kinetic energy release (T50) of 26 ± 1.5 kJ mol?1. The MNDO calculation of the minimum energy reaction path reveals that methylfuran ions 1 and 2 favour a rearrangement into pyran ions before fragmentation into furfuryl ions, but that the energy barrier of the first rearrangement step is at least of the same height as the barrier for the dissociation of pyran ions into pyrylium ions. This agrees with the experimental results.  相似文献   

6.
The ion-molecule reactions of dimethyl ether ions CH3OCH3 + and (CH3OCH3)H+, and four- to seven-membered ring lactams with methyl substituents in various positions were characterized by using a quadrupole ion trap mass spectrometer and a triple-quadrupole mass spectrometer. In both instruments, the lactams were protonated by dimethyl ether ions and formed various combinations of [M + 13] +, [M + 15] +, and [M + 45] + adduct ions, as well as unusual [M + 3] + and [M + 16] + adduct ions. An additional [M + 47] + adduct ion was formed in the conventional chemical ionization source of the triple-quadrupole mass spectrometer. The product ions were isolated and collisionally activated in the quadrupole ion trap to understand formation pathways, structures, and characteristic dissociation pathways. Sequential activation experiments were performed to elucidate fragment ion structures and stepwise dissociation sequences. Protonated lactams dissociate by loss of water, ammonia, or methylamine; ammonia and carbon monoxide; and water and ammonia or methylamine. The [M + 16] + products, which are identified as protonated lactone structures, are only formed by those lactams that do not have an N-methyl substituent. The ion-molecule reactions of dimethyl ether ions with lactams were compared with those of analogous amides and lactones.  相似文献   

7.
By combining results from a variety of mass spectrometric techniques (metastable ion, collisional activation, collision-induced dissociative ionization, neutralization-reionization spectrometry, 2H, 13C and 18O isotopic labelling and appearance energy measurements) and high-level ab initio molecular orbital calculations, the potential energy surface of the [CH5NO]+ ˙ system has been explored. The calculations show that at least nine stable isomers exist. These include the conventional species [CH3ONH2]+ ˙ and [HO? CH2? NH2]+ ˙, the distonic ions [O? CH2? NH3]+ ˙, [O? NH2? CH3]+ ˙, [CH2? O(H)? NH2]+ ˙, [HO? NH2? CH2]+ ˙, and the ion-dipole complex CH2?NH2+ …? OH˙. Surprisingly the distonic ion [CH2? O? NH3]+ ˙ was found not to be a stable species but to dissociate spontaneously to CH2?O + NH3+ ˙. The most stable isomer is the hydrogen-bridged radical cation [H? C?O …? H …? NH3]+ ˙ which is best viewed as an immonium cation interacting with the formyl dipole. The related species [CH2?O …? H …? NH2]+ ˙, in which an ammonium radical cation interacts with the formaldehyde dipole is also a very stable ion. It is generated by loss of CO from ionized methyl carbamate, H2N? C(?O)? OCH3 and the proposed mechanism involves a 1,4-H shift followed by intramolecular ‘dictation’ and CO extrusion. The [CH2?O …? H …? NH2]+ ˙ product ions fragment exothermically, but via a barrier, to NH4+ ˙ HCO…? and to H3N? C(H)?O+ ˙ H˙. Metastable ions [CH3ONH2]+…? dissociate, via a large barrier, to CH2?O + NH3+ + and to [CH2NH2]+ + OH˙ but not to CH2?O+ ˙ + NH3. The former reaction proceeds via a 1,3-H shift after which dissociation takes place immediately. Loss of OH˙ proceeds formally via a 1,2-CH3 shift to produce excited [O? NH2? CH3]+ ˙, which rearranges to excited [HO? NH2? CH2]+ ˙ via a 1,3-H shift after which dissociation follows.  相似文献   

8.
Scrambling data for the three observed [C2H3O]+ isomers, namely [CH3CO]+ (a), [CH2COH]+ (b) and (c), are rationalized by using ab initio molecular orbital calculations. For ions a and c, processes leading to scrambling of the carbon atoms require substantially more energy than the threshold for decomposition to [CH3]+ + CO. Accordingly, little or no carbon scrambling is predicted nor is any observed in the metastable dissociation of a and c. The observed carbon scrambling in b prior to metastable dissociation to [CH3]+ + CO has previously been explained in terms of a mechanism involving the oxiranyl cation (c). However, this mechanism is shown to be unlikely because of the high energies involved. An alternative lower-energy pathway involving the intermediacy of protonated oxirene (h) is proposed. Such a mechanism is fully compatible with the experimental data.  相似文献   

9.
Ten [C8C1Im]+ (1‐methyl‐3‐octylimidazolium)‐based ionic liquids with anions Cl?, Br?, I?, [NO3]?, [BF4]?, [TfO]?, [PF6]?, [Tf2N]?, [Pf2N]?, and [FAP]? (TfO=trifluoromethylsulfonate, Tf2N=bis(trifluoromethylsulfonyl)imide, Pf2N=bis(pentafluoroethylsulfonyl)imide, FAP=tris(pentafluoroethyl)trifluorophosphate) and two [C8C1C1Im]+ (1,2‐dimethyl‐3‐octylimidazolium)‐based ionic liquids with anions Br? and [Tf2N]? were investigated by using X‐ray photoelectron spectroscopy (XPS), NMR spectroscopy and theoretical calculations. While 1H NMR spectroscopy is found to probe very specifically the strongest hydrogen‐bond interaction between the hydrogen attached to the C2 position and the anion, a comparative XPS study provides first direct experimental evidence for cation–anion charge‐transfer phenomena in ionic liquids as a function of the ionic liquid’s anion. These charge‐transfer effects are found to be surprisingly similar for [C8C1Im]+ and [C8C1C1Im]+ salts of the same anion, which in combination with theoretical calculations leads to the conclusion that hydrogen bonding and charge transfer occur independently from each other, but are both more pronounced for small and more strongly coordinating anions, and are greatly reduced in the case of large and weakly coordinating anions.  相似文献   

10.
Mass spectra of 1-phenylethanol-1 and its analogues, specifically deuterated in the aliphatic chain, suggest that the [M? CH3]+ ion is represented partly by an α-hydroxybenzyl fragment. Moreover, the molecular ion loses successively—after scrambling of all hydrogen atoms, except those of CH3? a hydrogen atom and C6H6, generation the CH3CO+ ion. Diffuse peaks, found in the spectra of of 2-phenylethanol-1 and its analogues, specifically deuterated in the aliphatic chain and in the phenyl ring, show that the molecular ion loses C2H4O, possibly via a four-center mechanism, after an exchange of aromatic and hydroxylic hydrogens. Mass spectra of 1-phenylpropanol-2 and its analogues, specifically, deuterated in the aliphatic chain, demonstrate that in the molecular ion exclusively the hydroxyl hydrogen atom is transferred to one of the ortho-positions of the phenyl ring via a McLafferty rearrangement, generating the [M ? C2H4O]+ ion. Furtherore, an eight-membered ring structure is proposed for the [M ? CH3]+ ion to explain the loss of H2O and C2H2O from this ion after an extensive scrambling of hydrogen atoms.  相似文献   

11.
Collisional activation mass spectra confirm that tolyl ions can be produced from a variety of CH3C6H4Y compounds. High purity o-, m- and p-tolyl ions are prepared by chemical ionization of the corresponding fluorides (Y=F) as proposed by Harrison. In electron ionization of CH3C6H4Y formation of the more stable tropylium and benzyl ionic isomers usually accompanies that of the o-, m- and p-tolyl ions. Isomerization of low energy [CH3C6H4Y]+? to [Y–methylenecyclohexadiene]+? is proposed to account for most [benzyl]+ formation, while the tropylium ion appears to arise from the isomerization of tolyl ions formed with higher internal energies, [o-, m-, p-tolyl]+→ [benzyl]+→ [tropylium]+, consistent with Dewar's predictions from MINDO/3 calculations.  相似文献   

12.
The ion-molecule reactions between [CH3X]+˙ [CH3XH] +, [CH3XCH3]+ ions (X = F, Cl, Br, I) and a number of nucleophiles have been studied by ion cyclotron resonance techniques. Protonation of the nucleophiles is observed to occur from both the molecular ions [CH3]X+˙ and protonated species [CH3XH]+ whereas dimethylhalonium ions [CH3XCH3]+ react principally by methyl cation transfer. A notable exception occurs in methyl iodide where the molecular ions [CH3I]+˙ act both as proton and methyl cation donors, whereas dimethyliodonium ions are found unreactive. The results are discussed with reference to the use of alkyl halides as reagent gases in chemical ionization experiments.  相似文献   

13.
The charge reversal collision induced decomposition mass analyzed ion kinetic energy spectrum of allyl anion has been compared with the collision induced dissociation mass analyzed ion kinetic energy spectrum of allyl cation and found to be identical except for the presence of +2 ions formed by charge stripping in the spectrum of the [C3H5]+ ion. Likewise, the collision induced dissociation mass analyzed ion kinetic energy charge reversal spectrum of [CH3Se]? has been compared with the collision induced dissociation mass analyzed ion kinetic energy spectrum of [CH3Se]+ and found to be identical. A study of the pressure dependence of the collision induced dissociation mass analyzed ion kinetic energy spectrum of [C3H5]+ and [C3H5]? showed increasing fragmentation with increasing collision gas pressure, and suggests that a greater mean number of collisions converts more energy to internal modes in the collision induced dissociation mass analyzed ion kinetic energy experiment even at low pressures.  相似文献   

14.
The electron impact-induced fragmentation of azobenzenes and its d1, d2, d5, d10, and 15N analogues was studied by mass Spectrometry and ion kinetic energy spectroscopy. The main fragment ions found in the mass spectrum of azobenzene are due to two parallel stepwise processes from the molecular ion: the expulsion of N2 and two hydrogen radicals producing an ion at m/z 152 having possibly a biphenylene radical cation structure and loss of C6H5? and N2. Except in the elimination of two hydrogen atoms from [M ? N2] ions, hydrogen scrambling between the phenyl rings does not feature in azobenzene upon electron impact.  相似文献   

15.
The mass spectra of 13C-labelled 2-phenylthiophenes and 2,5-diphenylthiophenes were studied. The label distributions for the [HCS]+, [C2H2S], [C8H6], [C9H7]+ and [C7H5]S+ ions from 2-phenylthiophene and the [HCS]+, [C9H7]+, [C7H5S], and [C15H11]+ ions from 2,5-diphenylthiophene were interpreted in terms of both carbon skeletal rearrangements in the thiophene ring and migration of the phenyl substituent. The degree of carbon scrambling in the thiophene ring appeared to be almost independent of the electron beam energy. The formation of some of the fragment ions studied seems to be so fast that no carbon scrambling could be detected at all; in neither case was complete scrambling of the carbon atoms of the thiophene ring observed.  相似文献   

16.
The electron impact (EI) ionization-induced fragmentation pathways of the new 1,9-bis(dimethylamino) phenalenium cation [1]+ were investigated. The peri-dimethylamino substituents of [1]+ are incorporated in a trimethine cyanine substructure and show strong steric interactions. A mechanism is proposed for the unusual elimination of CH3N?CH2, HN(CH3)2 and (CH3)3N from [1]+ and for the accompanying cyclizations to heterocyclic ions: prior to fragmentation, the intact cation [1]+ rearranges, by reciprocal CH3 and H transfers, to new isomeric cations which decompose subsequently in a characteristic way. A wealth of consistent information on dissociation pathways and fragment structures is provided by collision-induced dissociation tandem mass spectra, collision-induced dissociation mass-analysed ion kinetic energy spectra and exact mass measurements of the salt cation and of its primary fragment ions. The liquid secondary ion mass spectrum of [1]+ is very similar to its EI mass spectrum.  相似文献   

17.
A reaction of 4-(N-nitramino)-3-phenylfuroxane with the Ac2O/H2SO4 system leads to the formation of [1,2,5]oxadiazolo[3,4-c]cinnoline-1,5-dioxide, the first representative of furoxanocinnolines. The reaction presumably proceeds through the transformation of the nitramine fragment NHNO2 to the oxodiazonium ion [N=N=O]+ with subsequent intramolecular attack by this cation on the phenyl ring. Furoxanocinnoline is also formed in the reaction of the 4-(N-nitramino)-3-phenylfuroxane O-methyl derivative with H2SO4. It is assumed that this reaction also proceeds with involvement of the intermediate cation [N=N=O]+ formed by the protonation of the N=N(O)OMe group and subsequent elimination of MeOH. 7-Nitro derivative is formed when furoxanocinnoline is nitrated with the concentrated HNO3/H2SO4 mixture. The compounds obtained were characterized by 1H, 13C, and 14N NMR spectroscopy.  相似文献   

18.
The mass spectra of many triphenyl/tetraphenyl derivatives of the Group IV and V elements exhibit the processes [M+˙ ? C12H10] and/or [M+˙ ? C6H5· ? C12H10]. These fragmentations are not preceded by hydrogen scrambling between all the phenyl rings. Hydrogen scrambling does occur in certain fragment ions prior to fragmentation in both the positive and negative-ion spectra. The process [M+˙ ? C12H10] occurs in the negative-ion mass spectrum of tetraphenylsilane.  相似文献   

19.
The reaction of the bulky bis(imidazolin‐2‐iminato) ligand precursor (1,2‐(LMesNH)2‐C2H4)[OTs]2 ( 1 2+ 2[OTs]?; LMes=1,3‐dimesityl imidazolin‐2‐ylidene, OTs=p‐toluenesulfonate) with lithium borohydride yields the boronium dihydride cation (1,2‐(LMesN)2‐C2H4)BH2[OTs] ( 2 + [OTs]?). The boronium cation 2 + [OTs]? reacts with elemental sulfur to give the thioxoborane salt (1,2‐(LMesN)2‐C2H4)BS[OTs] ( 3 + [OTs]?). The hitherto unknown compounds 1 2+ 2[OTs]?, 2 + [OTs]?, and 3 + [OTs]? were fully characterized by spectroscopic methods and single‐crystal X‐ray diffraction. Moreover, DFT calculations were carried out to elucidate the bonding situation in 2 + and 3 +. The theoretical, as well as crystallographic studies reveal that 3 + is the first example for a stable cationic complex of three‐coordinate boron that bears a B?S double bond.  相似文献   

20.
The site of protonation in the reaction of gaseous Brønsted acids with chlorobenzene and fluorobenzene derivatives has been examined using deuterium labelling of chlorobenzene and deuterated reagent gases (D2 and N2/D2). In the protonation of chlorobenzene by [H3]+ ~30% of the [MH? HCl]+ fragment ions arise from a chlorine-protonated species while ~70% arise from a ring-protonated species in which complete hydrogen scrambling has occurred. In the reaction of [N2H]+ with chlorobenzene ~75% of the fragment ions arise from the chlorine-protonated form with ~25% arising from the ring-protonated form of [MH]+. By contrast fluorobenzene fragments almost entirely from the fluorine-protonated form. Similar results are obtained for dihalobenzenes. The mechanistic implications are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号