首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We consider a quantum optics model where the cavity interacts with two-coupled atoms. The atom-atom entanglement, atoms-cavity entanglement and the mixture for the two atoms are investigated, and discuss the effects of the initial conditions, atom-atom coupling and the mean number of photons on the entanglements and mixture. We find that atom-atom coupling plays an important role in the entanglement and mixture. Numerical results show that under some conditions the phenomena of “entanglement sudden death” and “entanglement collapse and revival” emerge.  相似文献   

2.
In this Letter, the “number-phase entropic uncertainty relation” and the “number-phase Wigner function” of generalized coherent states associated to a few solvable quantum systems with non-degenerate spectra are studied. We also investigate time evolution of “number-phase entropic uncertainty” and “Wigner function” of the considered physical systems with the help of temporally stable Gazeau-Klauder coherent states.  相似文献   

3.
We study the canonical and the coherent state quantizations of a particle moving in a magnetic field on the non-commutative plane. Using a θ-modified action, we perform the canonical quantization and analyze the gauge dependence of the theory. We compare coherent states quantizations obtained through Malkin-Man'ko states and circular squeezed states. The relation between these states and the “classical” trajectories is investigated, and we present numerical explorations of some semiclassical quantities.  相似文献   

4.
The physical cost of information erasure is considered within a new approach that regards erasure as loss of correlation between the state of an erasable quantum system and that of an enduring “referent” system holding classical information. A physical model of information erasure built on this referential picture is described in detail, and lower bounds on entropic and energetic costs are obtained from quantum dynamics and entropic inequalities alone.  相似文献   

5.
Entanglement dynamics of the N-qubit XY model in thermal and dephasing environments are investigated by solving the Lindblad form of the master equation. Analytical solutions for the two-qubit case and numerical solutions for the multi-qubit case are obtained. For the two-qubit case, our results revealed two main features for entanglement evolution from different initial states. First, the thermal reservoir always induces degradation of the entanglement, and the entanglement may undergo sudden death during certain intervals of the evolution time. Second, the dephasing environment induces damped oscillation of the entanglement for initially separable states and mixed states with relative large values of Δ or J; however, it always induces exponentially decay of the entanglement for the initial Bell states. For the multi-qubit case, our results show that the entanglement decreases monotonically as the time evolves for the initial W state, and behaves as damped oscillation for the initial “one-particle” state. Particularly, for system with large number of qubits, the curves of the concurrence C12 with different N are almost overlapped in dephasing environment.  相似文献   

6.
We introduce and analyze the physics of “driving reversal” experiments. These are prototype wavepacket dynamics scenarios probing quantum irreversibility. Unlike the mostly hypothetical “time reversal” concept, a “driving reversal” scenario can be realized in a laboratory experiment, and is relevant to the theory of quantum dissipation. We study both the energy spreading and the survival probability in such experiments. We also introduce and study the “compensation time” (time of maximum return) in such a scenario. Extensive effort is devoted to figuring out the capability of either linear response theory or random matrix theory (RMT) to describe specific features of the time evolution. We explain that RMT modeling leads to a strong non-perturbative response effect that differs from the semiclassical behavior.  相似文献   

7.
We propose a secure bidirectional quantum communication protocol, which is based on a shared private quantum entangled channel, the highlight of our protocol is that the drawback “information leakage” is eliminated. Our protocol is similar but more efficient than a bidirectional quantum communication based on QKD & OTP (One-time pad).  相似文献   

8.
Pure states in quantum field theory can be represented by many-fingered block-time wave functions, which treat time on an equal footing with space and make the notions of “time evolution” and “state at a given time” fundamentally irrelevant. Instead of information destruction resulting from an attempt to use a “state at a given time” to describe semi-classical black-hole evaporation, the full many-fingered block-time wave function of the universe conserves information by describing the correlations of outgoing Hawking particles in the future with ingoing Hawking particles in the past.  相似文献   

9.
We analyze the principle of a very general and conceptually simple method for manipulating optical fields by coupling them into a matter waves Young double slit apparatus. The field, non resonant with the atoms, acts as a phase-retarding medium in one of the arms of the interferometer and shifts the atomic fringe pattern. The method constitutes a simple quantum nondemolition measuring scheme of the photon number. Non classical states such as Schrödinger cats and Fock states of the field are generated in the measurement process. The analysis of the atomic interferometer with optical retarding fields provides a very simple and striking illustration of basic concepts of the quantum measurement theory and of the principle of complementarity. This scheme, which would be very difficult to implement in the optical domain, is equivalent to a more feasible and recently proposed Ramsey interference method to measure small microwave fields with beams of Rydberg atoms.Associé au Centre National de la Recherche Scientifique et à l'Université Pierre et Marie Curie  相似文献   

10.
11.
We expand a set of notions recently introduced providing the general setting for a universal representation of the quantum structure on which quantum information stands. The dynamical evolution process associated with generic quantum information manipulation is based on the (re)coupling theory of SU (2) angular momenta. Such scheme automatically incorporates all the essential features that make quantum information encoding much more efficient than classical: it is fully discrete; it deals with inherently entangled states, naturally endowed with a tensor product structure; it allows for generic encoding patterns. The model proposed can be thought of as the non-Boolean generalization of the quantum circuit model, with unitary gates expressed in terms of 3nj coefficients connecting inequivalent binary coupling schemes of n + 1 angular momentum variables, as well as Wigner rotations in the eigenspace of the total angular momentum. A crucial role is played by elementary j-gates (6j symbols) which satisfy algebraic identities that make the structure of the model similar to “state sum models” employed in discretizing topological quantum field theories and quantum gravity. The spin network simulator can thus be viewed also as a Combinatorial QFT model for computation. The semiclassical limit (large j) is discussed.  相似文献   

12.
We present a potential scheme to implement two-qubit quantum phase gates through an unconventional geometric phase shift with two four-level SQUIDs in a cavity. The SQUID qubits undergo no transitions during the gate operation, while the cavity mode is displaced along a circle in the phase space, acquiring a geometric phase depending conditionally upon the SQUIDs’ states. Under certain conditions, the SQUID qubits are disentangled with the cavity mode and the SQUIDs’ states remain in their ground states during the gate operation, thus the gate is insensitive to both the SQUIDs’ “spontaneous emission” and the cavity decay.  相似文献   

13.
D. Sokolovski 《Physics letters. A》2008,372(21):3784-3791
Hardy's paradox is analysed within Feynman's formulation of quantum mechanics. A transition amplitude is represented as a sum over virtual paths which different intermediate measurements convert into different sets of real pathways. Contradictions arise if conflicting statements are applied to the same statistical ensemble. Usefulness of “strange” weak values for resolving the paradox is disputed.  相似文献   

14.
We present an interesting monogamy equation for (2⊗2⊗n)-dimensional pure states, by which a quantity is found to characterize the tripartite entanglement with the GHZ type and W type entanglements as a whole. In particular, we, for the first time, reveals that for any quantum state of a pair of qubits, the difference between the two remarkable entanglement measures, concurrence and negativity, characterizes the W type entanglement of tripartite pure states with the two-qubit state as reduced density.  相似文献   

15.
A.D. dSouza  A.T. Avelar  B. Baseia 《Physica A》2009,388(7):1331-1336
We consider recent schemes [J.M. Liu, B. Weng, Physica A 367 (2006) 215] to teleport unknown atomic states and superposition of zero- and two-photon states using the two-photon Jaynes-Cummings model. Here we do the same using the “full two-photon Jaynes-Cumming”, valid for arbitrary average number of photons. The success probability and fidelity of this teleportation are also considered.  相似文献   

16.
Quantum knots     
We construct an exactly solvable example of Sturmian bound states which exist in the absence of any confining potential. Their origin is topological—these states are found to live on certain “knotted” contours C(N) of complexified coordinates.  相似文献   

17.
G. Karpat 《Optics Communications》2009,282(22):4460-4463
We study time dependence of exchange symmetry properties of Bell states when two-qubits interact with local baths having identical parameters. In case of classical noise, we consider a decoherence Hamiltonian which is invariant under swapping the first and second qubits. We find that as the system evolves in time, two of the three symmetric Bell states preserve their qubit exchange symmetry with unit probability, whereas the symmetry of the remaining state survives with a maximum probability of 0.5 at the asymptotic limit. Next, we examine the exchange symmetry properties of the same states under local, quantum mechanical noise which is modeled by two identical spin baths. Results turn out to be very similar to the classical case. We identify decoherence as the main mechanism leading to breaking of qubit exchange symmetry.  相似文献   

18.
We analyze three important experimental domains (SQUIDs, molecular interferometry, and Bose-Einstein condensation) as well as quantum-biophysical studies of the neuronal apparatus to argue that (i) the universal validity of unitary dynamics and the superposition principle has been confirmed far into the mesoscopic and macroscopic realm in all experiments conducted thus far; (ii) all observed “restrictions” can be correctly and completely accounted for by taking into account environmental decoherence effects; (iii) no positive experimental evidence exists for physical state-vector collapse; (iv) the perception of single “outcomes” is likely to be explainable through decoherence effects in the neuronal apparatus. We also discuss recent progress in the understanding of the emergence of quantum probabilities and the objectification of observables. We conclude that it is not only viable, but moreover compelling to regard a minimal no-collapse quantum theory as a leading candidate for a physically motivated and empirically consistent interpretation of quantum mechanics.  相似文献   

19.
This erratum is about an assumption made in Section 5 of the Letter “Coherent states of a particle in a magnetic field and the Stieltjes moment problem” by the same authors. The assumption is wrong and, as a consequence, Proposition 4 in the quoted article is wrong.  相似文献   

20.
Dequantization is a set of rules which turn quantum mechanics (QM) into classical mechanics (CM). It is not the WKB limit of QM. In this paper we show that, by extending time to a 3-dimensional “supertime,” we can dequantize the system in the sense of turning the Feynman path integral version of QM into the functional counterpart of the Koopman-von Neumann operatorial approach to CM. Somehow this procedure is the inverse of geometric quantization and we present it in three different polarizations: the Schrödinger, the momentum and the coherent states ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号