首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new semiclassical approach to the linear and nonlinear one-dimensional Schr?dinger equation is presented. For both equations our zeroth-order solutions include nonperturbative quantum corrections to the WKB solution and the Thomas-Fermi solution, thereby allowing us to make uniformly converging perturbative expansions of the wave functions. Our method leads to a new quantization condition that yields exact eigenenergies for the harmonic-oscillator and Morse potentials.  相似文献   

2.
Two known two-dimensional SUSY quantum mechanical constructions—the direct generalization of SUSY with first-order supercharges and higher-order SUSY with second-order supercharges—are combined for a class of 2-dim quantum models, which are not amenable to separation of variables. The appropriate classical limit of quantum systems allows us to construct SUSY-extensions of original classical scalar Hamiltonians. Special emphasis is placed on the symmetry properties of the models thus obtained—the explicit expressions of quantum symmetry operators and of classical integrals of motion are given for all (scalar and matrix) components of SUSY-extensions. Using Grassmanian variables, the symmetry operators and classical integrals of motion are written in a unique form for the whole Superhamiltonian. The links of the approach to the classical Hamilton-Jacobi method for related “flipped” potentials are established.  相似文献   

3.
In this work, we use linear invariants and the dynamical invariant method to obtain exact solutions of the Schrödinger equation for the generalized time-dependent forced harmonic oscillator in terms of solutions of a second order ordinary differential equation that describes the amplitude of the classical unforced damped oscillator. In addition, we construct Gaussian wave packet solutions and calculate the fluctuations in coordinate and momentum as well as the quantum correlations between coordinate and momentum. It is shown that the width of the Gaussian packet, fluctuations and correlations do not depend on the external force. As a particular case, we consider the forced Caldirola-Kanai oscillator.  相似文献   

4.
We expand a set of notions recently introduced providing the general setting for a universal representation of the quantum structure on which quantum information stands. The dynamical evolution process associated with generic quantum information manipulation is based on the (re)coupling theory of SU (2) angular momenta. Such scheme automatically incorporates all the essential features that make quantum information encoding much more efficient than classical: it is fully discrete; it deals with inherently entangled states, naturally endowed with a tensor product structure; it allows for generic encoding patterns. The model proposed can be thought of as the non-Boolean generalization of the quantum circuit model, with unitary gates expressed in terms of 3nj coefficients connecting inequivalent binary coupling schemes of n + 1 angular momentum variables, as well as Wigner rotations in the eigenspace of the total angular momentum. A crucial role is played by elementary j-gates (6j symbols) which satisfy algebraic identities that make the structure of the model similar to “state sum models” employed in discretizing topological quantum field theories and quantum gravity. The spin network simulator can thus be viewed also as a Combinatorial QFT model for computation. The semiclassical limit (large j) is discussed.  相似文献   

5.
The coherent states for a system of time-dependent singular potentials coupled to inverted CK (Caldirola-Kanai) oscillator are investigated by employing invariant operator method and Lie algebraic approach. We considered Coulomb potential and inverse quadratic potential as singularities of the system. The spectrum of quantum states is discrete for λ < 0 while continuous for λ ? 0. The probability densities for both Fock state and coherent state are converged to the center as time goes by according to the dissipation of energy. We confirmed that the probability density in the coherent state oscillates back and forth like a classical wave packet.  相似文献   

6.
7.
By using the supersymmetric WKB approximation approach and the functional analysis method, we solve approximately the Dirac equation with the Eckart potential for the arbitrary spin-orbit quantum number κ. The bound state energy eigenvalues and the associated two-component spinors of the Dirac particles are obtained approximately.  相似文献   

8.
The model of the relativistic quantum particle in a homogeneous external field is proposed. This model is realized in the one-dimensional relativistic configurational x-space and is described by the finite-difference equation. The momentum p-space in our case is the one-dimensional Lobachevsky space. We have found the wave functions and propagator for the model under study in both x- and p-representations.  相似文献   

9.
Dequantization is a set of rules which turn quantum mechanics (QM) into classical mechanics (CM). It is not the WKB limit of QM. In this paper we show that, by extending time to a 3-dimensional “supertime,” we can dequantize the system in the sense of turning the Feynman path integral version of QM into the functional counterpart of the Koopman-von Neumann operatorial approach to CM. Somehow this procedure is the inverse of geometric quantization and we present it in three different polarizations: the Schrödinger, the momentum and the coherent states ones.  相似文献   

10.
We investigate the transition from integrability to chaos in a system built of usp(4) elements, both in the quantum case and in its classical limit, obtained using coherent states. This algebraic Hamiltonian consists in an integrable term plus a nonlinear perturbation, and we see that the level spacing distribution for the quantum system is well approximated by the Berry-Robnik-Brody distribution, and accordingly the classical limit displays mixed dynamics.  相似文献   

11.
Wensen Liu 《Annals of Physics》2004,312(2):480-491
A time-dependent closed-form formulation of the linear unitary transformation for harmonic-oscillator annihilation and creation operators is presented in the Schrödinger picture using the Lie algebraic approach. The time evolution of the quantum mechanical system described by a general time-dependent quadratic Hamiltonian is investigated by combining this formulation with the time evolution equation of the system. The analytic expressions of the evolution operator and propagator are found. The motion of a charged particle with variable mass in the time-dependent electric field is considered as an illustrative example of the formalism. The exact time evolution wave function starting from a Gaussian wave packet and the operator expectation values with respect to the complicated evolution wave function are obtained readily.  相似文献   

12.
Marius Grigorescu 《Physica A》2008,387(26):6497-6504
Probability waves in the configuration space are associated with coherent solutions of the classical Liouville or Fokker-Planck equations. Distributions localized in the momentum space provide action waves, described by the probability density and the generating function of the Hamilton-Jacobi theory. It is shown that by introducing a minimum distance in the coordinate space, the action distributions aquire the phase-space dispersion specific to the quantum objects. At finite temperature, probability density waves propagating with the sound velocity can arise as nonstationary solutions of the classical Fokker-Planck equation. The results suggest that in a system of quantum Brownian particles, a transition from complex to real probability waves could be observed.  相似文献   

13.
B. Belchev 《Annals of Physics》2009,324(3):670-681
Dito and Turrubiates recently introduced an interesting model of the dissipative quantum mechanics of a damped harmonic oscillator in phase space. Its key ingredient is a non-Hermitian deformation of the Moyal star product with the damping constant as deformation parameter. We compare the Dito-Turrubiates scheme with phase-space quantum mechanics (or deformation quantization) based on other star products, and extend it to incorporate Wigner functions. The deformed (or damped) star product is related to a complex Hamiltonian, and so necessitates a modified equation of motion involving complex conjugation. We find that with this change the Wigner function satisfies the classical equation of motion. This seems appropriate since non-dissipative systems with quadratic Hamiltonians share this property.  相似文献   

14.
钟红伟  唐翌 《中国物理快报》2006,23(8):1965-1968
The phonon dispersion relation of the commensurate quantum Frenkel-Kontorova model is studied by means of the time-dependent variational approach combined with a Hartree-type many-body trial wavefunction for the particles. The single-particle state is taken to be a frozen Jackiw-Kerman wavefunction. Under the condition of minimum uncertainty, equations of motion for the particle expectation values are derived to obtain the phonon dispersion relation. It is shown that the strength of the substrate potential and the phonon excitation gap are reduced due to the quantum fluctuations in comparison with those of the classical model. We also compare our results with those previously obtained by using the path-integral molecular dynamics.  相似文献   

15.
Using the spectral distribution associated with the adjacency matrix of graphs, we introduce a new method of calculation of amplitudes of continuous-time quantum walk on some rather important graphs, such as line, cycle graph Cn, complete graph Kn, graph Gn, finite path and some other finite and infinite graphs, where all are connected with orthogonal polynomials such as Hermite, Laguerre, Tchebichef, and other orthogonal polynomials. It is shown that using the spectral distribution, one can obtain the infinite time asymptotic behavior of amplitudes simply by using the method of stationary phase approximation (WKB approximation), where as an example, the method is applied to star, two-dimensional comb lattices, infinite Hermite and Laguerre graphs. Also by using the Gauss quadrature formula one can approximate the infinite graphs with finite ones and vice versa, in order to derive large time asymptotic behavior by WKB method. Likewise, using this method, some new graphs are introduced, where their amplitudes are proportional to the product of amplitudes of some elementary graphs, even though the graphs themselves are not the same as the Cartesian product of their elementary graphs. Finally, by calculating the mean end to end distance of some infinite graphs at large enough times, it is shown that continuous-time quantum walk at different infinite graphs belong to different universality classes which are also different from those of the corresponding classical ones.  相似文献   

16.
We address the question of which phase space functionals might represent a quantum state. We derive necessary and sufficient conditions for both pure and mixed phase space quantum states. From the pure state quantum condition we obtain a formula for the momentum correlations of arbitrary order and derive explicit expressions for the wave functions in terms of time-dependent and independent Wigner functions. We show that the pure state quantum condition is preserved by the Moyal (but not by the classical Liouville) time evolution and is consistent with a generic stargenvalue equation. As a by-product Baker's converse construction is generalized both to an arbitrary stargenvalue equation, associated to a generic phase space symbol, as well as to the time-dependent case. These results are properly extended to the mixed state quantum condition, which is proved to imply the Heisenberg uncertainty relations. Globally, this formalism yields the complete characterization of the kinematical structure of Wigner quantum mechanics. The previous results are then succinctly generalized for various quasi-distributions. Finally, the formalism is illustrated through the simple examples of the harmonic oscillator and the free Gaussian wave packet. As a by-product, we obtain in the former example an integral representation of the Hermite polynomials.  相似文献   

17.
We show from first principles the emergence of classical Boltzmann equations from relativistic nonequilibrium quantum field theory as described by the Kadanoff–Baym equations. Our method applies to a generic quantum field, coupled to a collection of background fields and sources, in a homogeneous and isotropic spacetime. The analysis is based on analytical solutions to the full Kadanoff–Baym equations, using the WKB approximation. This is in contrast to previous derivations of kinetic equations that rely on similar physical assumptions, but obtain approximate equations of motion from a gradient expansion in momentum space. We show that the system follows a generalized Boltzmann equation whenever the WKB approximation holds. The generalized Boltzmann equation, which includes off-shell transport, is valid far from equilibrium and in a time dependent background, such as the expanding universe.  相似文献   

18.
Similar to the case of a simple harmonic oscillator, an increase in azimuthal quantum number l will result in simultaneous decrease in both the uncertainty in radial position and the uncertainty in radial momentum for the same principal quantum number n in the non-relativistic hydrogen-like atom. Thus, in some cases of hydrogen-like atom and in the case of a simple harmonic oscillator, the more precisely the position is determined, the more precisely the momentum is known in that instant, and vice versa.  相似文献   

19.
We construct an effective Hamiltonian at fixed momentum which can be used to calculate higher-order corrections to quantum states of localized classical solutions of scalar field theories in 1 + 1 dimensions. We use the quantization scheme discussed first by Creutz and also by Rothe and one of the present authors (J.B.). The effective Hamiltonian is similar to, but nevertheless different from the one obtained in the collective coordinate method. The agreement of the energy corrections at the two-loop level has been checked.  相似文献   

20.
It is shown that the large-N limit of quantum chromodynamics in twodimensions is determined by classical equations with boundary conditions. The nonperturbative quantum spectrum of mesonic bound states is obtained from a classical equation with a simple N-dependent boundary condition on the local charge density. The simplicity of the classical correspondence is shown to be directly tied to the simplicity of the space of gauge invariant operators of the theory. Implications for other large-N models are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号