首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adsorption (at a low temperature) of nitrogen on the protonic zeolite H-FER results in hydrogen bonding of the adsorbed N2 molecules with the zeolite Si(OH)Al Brønsted acid groups. This hydrogen bonding interaction leads to activation, in the IR, of the fundamental NN stretching mode, which appears at 2331 cm−1. From the infrared spectra taken over a temperature range, while simultaneously recording integrated IR absorbance, temperature and nitrogen equilibrium pressure, the thermodynamics of the adsorption process was studied. The standard adsorption enthalpy and entropy resulted to be ΔH° = −20(±1) kJ mol−1 and ΔS° = −131(±10) J mol−1 K−1, respectively.  相似文献   

2.
Adsorption of carbon dioxide on a faujasite-type H-Y zeolite (Si:Al = 2.6:1) was studied by variable-temperature (200-290 K range) infrared spectroscopy. Adsorbed CO2 molecules interact with the Brønsted acid Si(OH)Al groups located inside the zeolite supercage, bringing about a characteristic bathochromic shift of the O-H stretching mode from 3645 cm−1 (free OH group) to 3540 cm−1 (hydrogen-bonded CO2 adsorption complex). Simultaneously, the asymmetric (ν3) mode of adsorbed CO2 is observed at 2353 cm−1. From the observed variation of the integrated intensity of the 3645 and 2353 cm−1 IR absorption bands upon changing temperature, corresponding values of standard adsorption enthalpy and entropy were found to be ΔH° = −28.5(±1) kJ mol−1 and ΔS° = −129(±10) J mol−1 K−1. Comparison with the reported values of ΔH° for CO2 adsorption on other zeolites is briefly discussed.  相似文献   

3.
Hydrogen adsorption (physisorption) on the faujasite-type zeolite Mg-X was studied by means of variable-temperature (80-140 K) FT-IR spectroscopy. Perturbation of the adsorbed H2 molecules by the cationic adsorbing centres of the zeolite renders the H-H stretching mode IR active, at 4065 cm−1. Simultaneous measurement of IR absorbance and hydrogen equilibrium pressure, for a series of spectra recorded at the increasing temperature, allowed standard adsorption enthalpy and entropy to be determined. They resulted to be ΔH0 = −13 kJ mol−1 and ΔS0 = −114 J mol−1 K−1, respectively. Both, spectroscopic and thermodynamic results are discussed in the broader context of corresponding data for hydrogen adsorption on other alkali and alkaline-earth cation exchanged zeolites, showing that, while an approximate correlation exists between ΔH0 and H-H stretching frequency, deviations can be expected for the case of zeolites containing small metal cations.  相似文献   

4.
Heat capacities of the electron acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ) and its radical-ion salt NH4-TCNQ have been measured at temperatures in the 12-350 K range by adiabatic calorimetry. A λ-type heat capacity anomaly arising from a spin-Peierls (SP) transition was found at 301.3 K in NH4-TCNQ. The enthalpy and entropy of transition are ΔtrsH=(667±7) J mol−1 and ΔtrsS=(2.19±0.02) J K−1 mol−1, respectively. The SP transition is characterized by a cooperative coupling between the spin and the phonon systems. By assuming a uniform one-dimensional antiferromagnetic (AF) Heisenberg chains consisting of quantum spin (S=1/2) in the high-temperature phase and an alternating AF nonuniform chains in the low-temperature phase, we estimated the magnetic contribution to the entropy as ΔtrsSmag=0.61 J K−1 mol−1 and the lattice contribution as ΔtrsSlat=1.58 J K−1 mol−1. Although the total magnetic entropy expected for the present compound is R ln 2 (=5.76 J K−1 mol−1), a majority of the magnetic entropy (∼4.6 J K−1 mol−1) persists in the high-temperature phase as a short-range-order effect. The present thermodynamic investigation quantitatively revealed the roles played by the spin and the phonon at the SP transition. Standard thermodynamic functions of both compounds have also been determined.  相似文献   

5.
A differential desorption technique, called intermittent temperature-programmed desorption (ITPD), was used to give new insights into the properties of La1−xSrxCo0.8Fe0.2O3 perovskites as a contribution to improve their performances with respect to various important application fields such as catalysis, electrocatalysis and solid oxide fuel cells (SOFC). Both ITPD and interrupted TPD (carried out at different heating rates) evidenced two distinct oxygen adsorbed states, desorbing at temperatures lower than 400 °C, corresponding to less than 5% of a compact monolayer of oxide ions. The first one, for low desorption temperatures (lower than 290 °C) exhibits a heat of adsorption (ΔH) distribution from 101 to 121 kJ mol−1. The second one, for higher desorption temperatures (between 290 and 400 °C) corresponds to ΔH = 146 ± 4 kJ mol−1. Additionally, for temperatures higher than 400 °C, we observed a continuous desorption of oxygen species, probably originating from the sub-surface or semi-bulk, with an associated activation energy of desorption ≥175 kJ mol−1.  相似文献   

6.
Attenuated total reflectance (ATR) spectroscopy was used to investigate the adsorption of coumarin organosilane molecules onto a fused silica surface. The difference between the absorption spectra of the molecules on the surface and in solution was explained by the interaction of the adsorbed coumarin organosilane molecules with the hydroxyl groups on the fused silica surface. This interaction produces a perturbation of the π electron distribution and the electronic transitions of the coumarin chromophore of the organosilane molecules adsorbed on the surface. From the kinetics adsorption curves, the calculated enthalpy values of 74.8 ± 5.2 kJ mol−1 and free energy of −38.22 ± 0.70 kJ mol−1 at 23 °C indicates a chemisorption process. The high sensitivity of ATR spectroscopy allows the detection of a monolayer formed by a 10 nM concentration of coumarin organosilane molecules, which covers more than half of the maximum surface coverage at 60 °C.  相似文献   

7.
The use of activated carbon obtained from Euphorbia rigida for the removal of a basic textile dye, which is methylene blue, from aqueous solutions at various contact times, pHs and temperatures was investigated. The plant material was chemically modified with H2SO4. The surface area of chemically modified activated carbon was 741.2 m2 g−1. The surface characterization of both plant- and activated carbon was undertaken using FTIR spectroscopic technique. The adsorption process attains equilibrium within 60 min. The experimental data indicated that the adsorption isotherms are well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity of activated carbon was 114.45 mg g−1 at 40° C. The adsorption kinetics of methylene blue obeys the pseudo-second-order kinetic model and also followed by the intraparticle diffusion model up to 60 min. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 55.51 kJ mol−1. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal textile dyes from textile wastewater processes.  相似文献   

8.
The interaction between the antimicrobial drug sulfamethazine (STM) and bovine serum albumin (BSA) has been studied using steady state and synchronous fluorescence spectroscopy. Fluorescence emission data revealed that BSA (2×10−6 M) fluorescence was statically quenched by STM at various concentrations, which implies that STM-BSA complex has been formed. The fluorescence emission data was analyzed via applying the Stern-Volmer analysis in combination with thermodynamic investigation, where obtained results revealed that quenching is static with quenching constants of 2.371, 1.658, and 0.916×105 M−1 at 298, 304, and 310 K, respectively. Binding constants and number of binding sites at different temperatures were also determined by applying the Scatchard method, which in turn were used to construct the van't Hoff plot in order to estimate the enthalpy (ΔH) and entropy changes (ΔS) for the complexation process. An average of 1.00±0.17 was estimated for the number of sites of BSA, which indicated that STM binds to BSA with stoichiometric ratio of 1:1. The values that were estimated from the van't Hoff plot for ΔH and (ΔS) were −36.8 kJ mol−1 and −14.9 J mol−1 K−1, respectively, which indicate that the STM-BSA complex is stabilized with hydrogen bonds and van der Waals interactions. Synchronous fluorescence data was obtained at Δλ of 15 and 60 nm, where obtained results confirmed that STM binds to BSA at the tryptophan residue (Trp. 213). In addition, the distance between STM and the Trp. 213 was estimated via employing the Förster's non-radiative energy-transfer theory, and was found to be 2.73 nm, which in turn indicated that STM can bind to BSA with high probability.  相似文献   

9.
The nitrogen-heterocyclic compound 8-hydroxyquinoline (8HQ) is one of the components of coal tar and has a wide variety of uses in industry. Because of its toxicity for aquatic organisms and harmful effects for human health, the removal of 8HQ from aqueous solutions by adsorption onto natural bentonite was investigated in the present work. The experimental results show that the optimum pH value of 2.5 is favourable for the 8HQ adsorption. The experimental data were fitted well with the pseudo-second-order kinetic and Langmuir adsorption isotherm models at all studied temperatures. The maximum adsorption capacity obtained from the Langmuir isotherm model at 20 °C was 120.6 mg g−1. The calculated thermodynamic results such as ΔG° (−24.3 kJ mol−1) and ΔH° (−9.56 kJ mol−1) indicate that the adsorption process is spontaneous and exothermic in nature. Solid phase extraction of 8HQ was also performed. The X-ray diffractometry (XRD), Fourier Transform Infrared (FTIR) and thermogravimetric (TG) analyses were carried out in order to confirm the 8HQ adsorption onto bentonite. According to the obtained results, natural bentonite can be a reusable and effective adsorbent for the removal of 8HQ.  相似文献   

10.
Study of the interaction between butyl p-hydroxybenzoate (butoben) and human serum albumin (HSA) has been performed by molecular modeling and multi-spectroscopic method. The interaction mechanism was predicted through molecular modeling first, then the binding parameters were confirmed using a series of spectroscopic methods, including fluorescence spectroscopy, UV-visible absorbance spectroscopy, circular dichroism (CD) spectroscopy and Fourier transform infrared (FT-IR) spectroscopy. The thermodynamic parameters of the reaction, standard enthalpy ΔH0 and entropy ΔS0, have been calculated to be −29.52 kJ mol−1 and −24.23 J mol−1 K−1, respectively, according to the Van’t Hoff equation, which suggests the van der Waals force and hydrogen bonds are the predominant intermolecular forces in stabilizing the butoben-HSA complex. Results obtained by spectroscopic methods are consistent with that of the molecular modeling study. In addition, alteration of secondary structure of HSA in the presence of butoben was evaluated using the data obtained from UV-visible absorbance, CD and FT-IR spectroscopies.  相似文献   

11.
A method for the attachment of 2-mercaptothiazoline (MTZ) to modified silica gel has been developed. In the first step, a new silylant agent was synthesized, named SiMTZ, by the reaction between MTZ molecule and chloropropyltrimethoxysilane (SiCl). SiMTZ and tetraethylortosilicate were co-condensed in the presence of n-dodecylamine, a neutral surfactant template, to produce a modified ordered hexagonal mesoporous silica named HMTZ. The modified material contained 0.89 ± 0.03 mmol of 2-mercaptothiazoline per gram of silica. FT-IR, FT-Raman, 29Si- and 13C-NMR spectra were in agreement with the proposed structure of the modified mesoporous silica in the solid state. HMTZ material has been used for divalent mercury adsorption from aqueous solution at 298 ± 1 K. The series of adsorption isotherms were adjusted to a modified Langmuir equation. The maximum number of moles of mercury adsorbed gave 2.34 ± 0.09 mmol/g of material. The same interaction was followed by calorimetric titration on an isoperibol calorimeter. The HMTZ presented a high capacity for the removal of the contaminant mercury from water. The ΔH and ΔG values for the interaction were determined to be −56.34 ± 1.07 and −2.14 ± 0.11 kJ mol−1. This interaction process was accompanied by a decrease of entropy value (−182 J mol−1 K−1). Thus, the interaction between mercury and HMTZ resulted in a spontaneous thermodynamic system with a high favorable exothermic enthalpic effect.  相似文献   

12.
Peng Ju 《Journal of luminescence》2011,131(8):1724-1730
The interaction between flower-like CdSe nanostructure particles (CdSe NP) and bovine serum albumin (BSA) was investigated from a spectroscopic angle under simulative physiological conditions. Under pH 7.4, CdSe NP could effectively quench the intrinsic fluorescence of BSA via static quenching. The binding constant (KA) was 6.38, 3.27, and 1.90×104 M−1 at 298, 304, and 310 K, respectively and the number of binding sites was 1.20. According to the Van't Hoff equation, the thermodynamic parameters (ΔH°=−77.48 kJ mol−1, ΔS°=−168.17 J mol−1 K−1) indicated that hydrogen bonds and van der Waals forces played a major role in stabilizing the BSA−CdSe complex. Besides, UV-vis and circular dichroism (CD) results showed that the addition of CdSe NP changed the secondary structure of BSA and led to a decrease in α-helix. These results suggested that BSA underwent substantial conformational changes induced by flower-like CdSe nanostructure particles.  相似文献   

13.
Titanium dioxide (TiO2) nanoparticles (NPs) are widely used as an important kind of biomaterials. The interaction between TiO2 (P25) at 20 nm in diameter and human serum albumin (HSA) was studied by fluorescence spectroscopy in this work. Under the simulative physiological conditions, fluorescence data revealed the presence of a single class of binding site on HSA and its binding constants (Ka) were 2.18±0.04×104, 0.87±0.05×104, 0.68±0.06×104 M−1 at 298, 304 and 310 K, respectively. In addition, according to the Van’t Hoff equation, the thermodynamic functions standard enthalpy (ΔH0) and standard entropy (ΔS0) for the reaction were calculated to be −75.18±0.15 kJ mol−1 and −170.11±0.38 J mol−1 K−1. These results indicated that TiO2 NPs bond to HSA mainly by van der Waals force and hydrogen bonding formation in low dielectric media, and the electrostatic interactions cannot be excluded. Furthermore, the effects of common ions on the binding constant of TiO2 NPs-HSA complex were discussed.  相似文献   

14.
The interaction of methyl blue (MB) with human serum albumin (HSA) was studied by fluorescence and absorption spectroscopy. The intrinsic fluorescence of HSA was quenched by MB, which was rationalized in terms of the static quenching mechanism. The number of binding sites and the apparent binding constants at different temperatures were obtained from the Stern-Volmer analysis of the fluorescence quenching data. The thermodynamic parameters determined by the van’t Hoff analysis of the binding constants (ΔH°=39.8 kJ mol−1 and ΔS°=239 J mol−1 K−1) clearly indicate that binding is absolutely entropy-driven and enthalpically disfavored The efficiency of energy transfer and the distance between the donor (HSA) and the acceptor (MB) were calculated as 60% and 2.06 nm from the Förster theory of non-radiation energy transfer.  相似文献   

15.
Docetaxel is a semi-synthetic product derived from the needles of the European yew. It is an antineoplastic agent belonging to the taxoid family. The interaction between docetaxel and human serum albumin (HSA) has been investigated systematically by the fluorescence quenching technique, synchronous fluorescence spectroscopy, ultraviolet (UV)-vis absorption spectroscopy, circular dichroism (CD) spectroscopy and Fourier transform infrared (FT-IR) under physiological conditions. Our fluorescence data showed that HSA had only one docetaxel binding site and the binding process was a static quenching procedure. According to the Van’t Hoff equation, the thermodynamic parameters standard enthalpy (ΔH0) and standard entropy (ΔS0) were calculated to be −41.07 KJ mol−1 and −49.72 J mol−1 K−1. These results suggested that hydrogen bond was the predominant intermolecular force stabling the docetaxel-HSA complex. The data from the CD, FT-IR and UV-vis spectroscopy supported the change in the secondary structure of protein caused by the interaction of docetaxel with HSA.  相似文献   

16.
H2 interaction with thin Rh films deposited on Pyrex glass under UHV conditions has been studied by simultaneous measurement of work function changes ΔΦ and hydrogen pressure P, at selected constant temperatures: 78 and 298 K. Prior to the adsorption experiments the thin film topography was illustrated using the AFM and STM methods. The influence of hydrogen adsorption on the resistance of thin Rh film was examined in the course of an independent experiment. The number of sites accessible for adsorption on the thin Rh film surface was found determining population of oxygen adatoms within the monolayer at 78 K, when incorporation of these adspecies below the surface is negligible. It was established that at all examined temperatures hydrogen adsorption led to coverage Θ approaching 1 under equilibrium pressure below 10−3 Pa, increasing the work function. Under higher H2 pressure an additional uptake of hydrogen leading to Θ ∼ 1.68 at 298 K, and to Θ ∼ 2 at 78 K is reached. On this surface at low temperatures there exist weakly bound, reversibly adsorbed, positively charged adspecies characteristic for hydrogen adsorption on transition metal hydrides. The change of thin Rh film resistance caused by hydrogen adsorption was not measurable.  相似文献   

17.
The interaction of La3+ to bovine serum albumin (BSA) has been investigated mainly by fluorescence spectra, UV-vis absorption spectra, and circular dichroism (CD) under simulative physiological conditions. Fluorescence data revealed that the quenching mechanism of BSA by La3+ was a static quenching process and the binding constant is 1.75×104 L mol−1 and the number of binding sites is 1 at 289 K. The thermodynamic parameters (ΔH=−20.055 kJ mol−1, ΔG=−23.474 kJ mol−1, and ΔS=11.831 J mol−1 K−1) indicate that electrostatic effect between the protein and the La3+ is the main binding force. In addition, UV-vis, CD, and synchronous fluorescence results showed that the addition of La3+ changed the conformation of BSA.  相似文献   

18.
Atomic Cl was generated by pulsed laser photolysis at 193 nm of CCl4, and was monitored by time resolved resonance fluorescence in the course of reaction with excess C2H2, diluted in Ar bath gas at pressures from 13 to 800 mbar. At 288 K simple pseudo first order kinetics were observed. Over 365-430 K bi-exponential decays were obtained, because of equilibration between the β-chlorovinyl adduct and the reactants. The ratios of forward and reverse rate constants yield ΔfH298(CHCHCl) = 274.0 ± 1.0 kJ mol−1 via a Third-Law analysis of the carbon-chlorine bond strength. The thermochemistry compares well with that predicted by an initio theory. The effective second-order rate constant was pressure dependent and was analyzed using Troe’s unimolecular formalism. Over the whole temperature range the low-pressure limiting value for addition, with Ar bath gas, is given by k0 = 4.1 × 10−30 (T/300 K)−2.47 cm6 molecule−2 s−1.  相似文献   

19.
Temperature dependent dielectric relaxation and thermodynamic properties of polyethylene glycols HO[CH2CH2O)nH with number average molecular weight 200 (n = 4), 300 (n = 7), 400 (n = 9) and 600 (n = 14) g mol− 1 have been studied using Time Domain Reflectometry (TDR) in the frequency range 10 MHz to 20 GHz. The frequency dependence of the complex dielectric permittivity is analyzed by the Havriliak-Negami expression. The static permittivity ε0, high frequency limiting static permittivity ε, average relaxation time τ0 and thermodynamic energy parameters such as free energy, enthalpy of activation and entropy of activation have been determined. The average free energy of activation ΔFτ for PEG molecules was found to be in the range 4-5 kcal mol− 1. The values of entropy ΔSτ for PEG-200, PEG-400 and PEG-600 molecules were found to be positive while entropy ΔSτ for PEG-300 molecules was found negative, which confirms that the configuration of PEG-300 involved in the dipolar orientation has an activated state, which is more ordered than the normal state compared to PEG-200, PEG-400 and PEG-600 molecules.  相似文献   

20.
The interaction mechanism of Acid Orange 6 (AO6) with human serum albumin (HSA) was investigated firstly by using fluorescence quenching technique, UV absorbance, circular dichroism (CD), Fourier transform infrared (FT-IR), three-dimensional fluorescence spectroscopy in combination with molecular modeling method under simulative physiological conditions. Fluorescence data indicated that there is a single class of binding sites between AO6 and HSA, and the alterations of HSA secondary structure in the presence of AO6 was confirmed by synchronous fluorescence, UV, CD, FT-IR and three-dimensional fluorescence spectra. The efficiency of fluorescence resonance energy transfer provided the binding distance (r) of 2.83 nm for AO6-HSA system. Furthermore, the thermodynamic parameters enthalpy change (ΔH0) and entropy change (ΔS0) for the reaction were calculated to be −5.77 kJ mol−1 and 109.42 J mol−1 K−1, respectively, according to Van't Hoff equation, these data suggested that both hydrophobic forces and hydrogen bonding play a major role in the binding of AO6 to HSA, which agrees well with the results of molecular modeling study. Experimental results showed that the interaction between AO6 and HSA induced a conformational change of HSA, which was proved by the qualitative and quantitative analysis data of different spectroscopic techniques under simulative physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号