首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two‐dimensional imaging system of X‐ray absorption fine structure (XAFS) has been developed at beamline BL‐4 of the Synchrotron Radiation Center of Ritsumeikan University. The system mainly consists of an ionization chamber for I0 measurement, a sample stage, and a two‐dimensional complementary metal oxide semiconductor (CMOS) image sensor for measuring the transmitted X‐ray intensity. The X‐ray energy shift in the vertical direction, which originates from the vertical divergence of the X‐ray beam on the monochromator surface, is corrected by considering the geometrical configuration of the monochromator. This energy correction improves the energy resolution of the XAFS spectrum because each pixel in the CMOS detector has a very small vertical acceptance of ~0.5 µrad. A data analysis system has also been developed to automatically determine the energy of the absorption edge. This allows the chemical species to be mapped based on the XANES feature over a wide area of 4.8 mm (H) × 3.6 mm (V) with a resolution of 10 µm × 10 µm. The system has been applied to the chemical state mapping of the Mn species in a LiMn2O4 cathode. The heterogeneous distribution of the Mn oxidation state is demonstrated and is considered to relate to the slow delocalization of Li+‐defect sites in the spinel crystal structure. The two‐dimensional‐imaging XAFS system is expected to be a powerful tool for analyzing the spatial distributions of chemical species in many heterogeneous materials such as battery electrodes.  相似文献   

2.
We applied proton microbeam particle‐induced X‐ray emission (µ‐PIXE) for mapping Ca, Zr, Ba and Yb, and atomic force microscopy (AFM) for imaging the surface landscape of a dental composite which releases Ca2+ and F? for the protection of hard dental tissues. Three areas ~250 × 250 µm2 located ~0.5–2 mm apart on a smooth surface specimen were mapped with 3.1 MeV protons focused to a ~3.0 µm spot and at ~3.9 µm pixel size sampling. The maps evidenced particles with diameters of 3.2–32 µm (Ca), 20–60 µm (Zr), ≤ 4 µm (Ba) and 10–50 µm (Yb). Cross‐section area histograms of Ca‐rich particles fitted with 2–6 Poisson functions revealed a polydisperse size distribution and substantial differences from an area to another, possibly implying large local variations of Ca2+ released in the hard tissue near a dental filling of a few millimeters in diameter. Such imbalances may lead to low local Ca2+ protection of the dental tissue, favoring the onset of secondary caries. Similarly, AFM images showed high zone‐dependent differences in the distributions of grains with apparent diameters of 1–4 µm, plausibly recognized as Ca‐ and Ba‐containing particles. In a simple model based on demineralization data, lateral diffusion of Ca2+ between adjacent domains containing high‐ and low‐area Ca‐rich grains is described by exponential concentration gradients. These gradients may generate appreciable electromotive forces, which may enhance electrochemically the local tissue demineralization. Similar effects are to be expected in the protective action of F? ions released from microgranules of YbF3 and of Ba fluoroaluminosilicate glass. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
This article describes a methodology for the analysis of minor and trace elements in petroleum cokes by wavelength‐dispersive X‐ray fluorescence (WD‐XRF) spectrometry. The methodology was developed in order to have a rapid and reliable control method of these elements, because they determine coke end uses. There are a number of standard methods of chemical analysis by WD‐XRF or inductively coupled plasma atomic emission spectrometry (ICP‐OES) techniques. However, the standards that use WD‐XRF measurement give detection limits (LD) above 10 mg·kg?1 and only analyse a few elements of interest, whereas the ICP‐OES method requires extensive sample handling and long sample preparation times, with the ensuing errors. In order to improve the method described in the standard ASTM D6376 and reach the LD and quantification limits (LQ) required, the different stages of the process, ranging from sample preparation to measurement conditions: analytical line, detector, crystal, tube power, use of primary beam filters, and measurement time, were optimised. The samples were prepared in the form of pressed pellets, under conditions of high cleanliness of the mills, crushers, presses, and dies, and of the laboratory itself. The following reference materials were used in measurement calibration and validation: SRM 1632c, SRM 2718, SRM 2719, SRM 2685b, AR 2771, AR 2772, SARM 18, SARM 19, and CLB‐1. In addition, a series of materials were analysed by WD‐XRF and ICP‐OES, and the results were compared. The developed methodology, which uses WD‐XRF, is rapid and accurate, and very low LD and measurement uncertainties were obtained for the following elements: Al, Ba, Ca, Cr, Cu, Fe, Ge, K, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Se, Si, Sn, Sr, Ti, V, and Zn. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Based on clinical trials showing the efficacy to reduce vertebral and non‐vertebral fractures, strontium ranelate (SrR) has been approved in several countries for the treatment of postmenopausal osteoporosis. Hence, it is of special clinical interest to elucidate how the Sr uptake is influenced by dietary Ca deficiency as well as by the formula of Sr administration, SrR versus strontium chloride (SrCl2). Three‐month‐old ovariectomized rats were treated for 90 days with doses of 25 mg kg?1 d?1 and 150 mg kg?1 d?1 of SrR or SrCl2 at low (0.1% Ca) or normal (1.19% Ca) Ca diet. Vertebral bone tissue was analysed by confocal synchrotron‐radiation‐induced micro X‐ray fluorescence and by backscattered electron imaging. Principal component analysis and k‐means clustering of the acquired elemental maps of Ca and Sr revealed that the newly formed bone exhibited the highest Sr fractions and that low Ca diet increased the Sr uptake by a factor of three to four. Furthermore, Sr uptake in bone of the SrCl2‐treated animals was generally lower compared with SrR. The study clearly shows that inadequate nutritional calcium intake significantly increases uptake of Sr in serum as well as in trabecular bone matrix. This indicates that nutritional calcium intake as well as serum Ca levels are important regulators of any Sr treatment.  相似文献   

5.
In vivo time‐resolved Cr and Ca X‐ray fluorescence (XRF) mapping measurements were performed in a laboratory over a period of 69 days on a living common aquatic plant Egeria densa that was immersed in 5 mM K2CrO4 aqueous solution. The time and spatial resolution for each time‐resolved XRF map were ~1.6 days and 1 × 1 mm2, respectively. The obtained XRF maps exhibited characteristic localized Cr and Ca areas where the XRF signals were especially strong (‘hot spots’), and this indicated the necessity of preliminary millimeter‐resolution surveying in XRF microscopy. Ca hot spots were detected prior to Cr(VI) immersion and nearly disappeared after immersion in deionized water for 2 weeks and the Cr(VI) solution for 1 week. After these immersions, a Cr hot spot was formed at approximately the same location of the missing Ca hot spot, which suggests that the original Ca‐accumulated regions were substituted for the isolation of Cr species when they were introduced. The sizes and intensity distributions of the Cr hot spots were sensitive to the Cr(VI) exposure approximately 1 week prior to each XRF measurement. This sensitivity suggests potential applications of E. densa as a Cr(VI) biomonitor in aquatic environments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Osteoporosis represents a major public health problem through its association with fragility fractures. The public health burden of osteoporotic fractures will rise in future generations, due in part to an increase in life expectancy. Strontium‐based drugs have been shown to increase bone mass in postmenopausal osteoporosis patients and to reduce fracture risk but the molecular mechanisms of the action of these Sr‐based drugs are not totally elucidated. The local environment of Sr2+ cations in biological apatites present in pathological and physiological calcifications in patients without such Sr‐based drugs has been assessed. In this investigation, X‐ray absorption spectra have been collected for 17 pathological and physiological calcifications. These experimental data have been combined with a set of numerical simulations using the ab initioFEFF9 X‐ray spectroscopy program which takes into account possible distortion and Ca/Sr substitution in the environment of the Sr2+ cations. For selected samples, Fourier transforms of the EXAFS modulations have been performed. The complete set of experimental data collected on 17 samples indicates that there is no relationship between the nature of the calcification (physiological and pathological) and the adsorption mode of Sr2+ cations (simple adsorption or insertion). Such structural considerations have medical implications. Pathological and physiological calcifications correspond to two very different preparation procedures but are associated with the same localization of Sr2+versus apatite crystals. Based on this study, it seems that for supplementation of Sr at low concentration, Sr2+ cations will be localized into the apatite network.  相似文献   

7.
《X射线光谱测定》2005,34(3):213-217
Macro‐ and microelement contents of five medicinal plants (Taraxacum officinale Weber, Eucalyptus globulus Labill, Plantago lanceolata L., Matricaria chamomilla L. and Mentha piperita L.) and their infusions were evaluated by the combined use of x‐ray fluorescence (WDXRF and EDXRF, bulk raw plants) and inductively coupled plasma (ICP‐MS and ICP‐AES, infusions) techniques. The analytical methods allow the determination of 17 elements (Na, Mg, Al, Si, P, S, K, Ca, Ti, Mn, Fe, Cu, Zn, As, Rb, Sr, and Pb) both in plants and in the infusions. The use of XRF techniques offer a good multielemental approach for the rapid quality control of bulk raw plant materials whereas ICP techniques are well suited for the analytical control of infusions in order to ascertain the nutritional role of medicinal plants and the daily dietary intake. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Dental enamel has been widely studied by particle‐induced x‐ray emission (PIXE), but less attention was paid to its demineralization, which leads to caries formation. Using broad‐beam PIXE and µ‐PIXE, we investigated normal enamel and the in vitro formation of pre‐carious lesion in lactic acid solution, aiming also to evaluate intercusp differences within the same tooth. Broad‐beam PIXE was performed using 3.0 MeV protons, and µ‐PIXE maps of Ca, Fe and Zn were collected with 3.1 MeV protons at ~4 µm resolution. In normal enamel a differentiated Ca‐rich surface layer was observed, where Fe and Zn reached their highest levels. In deeper layers, Fe and Zn evidenced quasiperiodic patterns of maxima, possibly due to coupled diffusion‐reaction catalytic processes involved in the enamel growth. Both Fe and Zn appeared to be located in a few distinct types of pools. Near the surface, demineralization induced an increase of Fe, Cu, Zn, Sr and Pb with respect to Ca, attributed to partial hydroxyapatite dissolution and/or to chelate extraction and concentration of trace metals. Ca maps revealed limited changes in the surface layer and a massive loss in the inner enamel; here, Fe was almost depleted and Zn partially removed. The maps of Ca, Fe and Zn demonstrated major intercusp variations in both normal and altered enamel. Thus, broad‐beam PIXE and µ‐PIXE, which do not require (semi)thin sectioning of the tooth as the conventional methods, provide compositional and structural insight of normal dental enamel, of its intercusp variability and of the alterations produced by in vitro demineralization, largely not accessible to the current techniques, and highly relevant for understanding the incipient caries formation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
10.
To clarify the contrasting impurity effects of Mn and Zn dopants on the critical temperature of optimally doped Ba0.5K0.5Fe2As2 superconductors, extended X‐ray absorption fine‐structure spectroscopy was implemented at the Fe and As K‐edge. In Mn‐doped compounds a gradual deviation of the symmetric FeAs4 tetrahedron and weakening of the Fe—As bond was observed. Conversely, in Zn‐doped compounds the perfect FeAs4 tetrahedron is maintained and the Fe—As bond is rigid. The local structural details are consistent with the development of superconductivity in these two systems, suggesting a significant role played by the topology of the FeAs4 tetrahedron and rigidness of the Fe—As bond in Mn/Zn‐doped Ba0.5K0.5Fe2As2 superconductors.  相似文献   

11.
Chemical state of cadmium in a hepatopancreas of a scallop (Patinopecten yessoensis) was studied by means of synchrotron radiation‐based X‐ray analytical techniques. X‐ray absorption fine structure (XAFS) and X‐ray fluorescence (XRF) imaging were used to identify the chemical state and the distribution of cadmium in the hepatopancreas, respectively. The results of in vivo Cd K‐edge XAFS suggested that the neighboring atoms of the cadmium in the hepatopancreas are of sulfur. Therefore, we propose that cadmium was accumulated by a metalloprotein with sulfur. Micro XRF imaging of thin sections of the hepatopancreas showed that cadmium is distributed on the surface of intestinal epithelia and concentrated in the internal tissue of the hepatopancreas. These results indicated that scallops accumulate cadmium inside the hepatopancreas through the intestinal epithelium.  相似文献   

12.
路芳  张兴华  卢遵铭  徐学文  唐成春 《物理学报》2012,61(14):144209-144209
利用固相反应法制备了Sr和Ba替代的Ca2.955-xMxSi2O7: 0.045Eu2+ (M= Sr, Ba, x= 0.1-0.5)系列荧光粉, 利用较大离子半径的Sr和Ba元素替代Eu掺杂Ca2.955-xMxSi2O7 中的Ca元素,研究Sr和Ba替代对样品结构和发光特性的影响. X射线衍射测试结果表明,少量Sr和Ba替代不会改变基质的晶体结构, 样品仍然为单斜晶系.未替代前, Ca2.955Si2O7: 0.045Eu2+ 样品的发射峰在574 nm左右,随着Sr含量的增加,样品的发射峰发生蓝移; 而Ba含量在x= 0.1-0.4时不会引起发射峰位置的移动, 但x= 0.5样品的发射峰发生蓝移.同等含量的Sr和Ba部分替代样品中的Ca元素, Ba替代样品的光谱强度较强.  相似文献   

13.
This paper presents the results of X‐ray fluorescence (XRF) analysis of bricks sampled from historical places in Pernambuco, a state in the northeastern region of Brazil. In this study, twenty bricks found in historical sites were analyzed. Two bricks made in the 17th century, presumably used as ballast in ships coming from Holland, five locally manufactured bricks: one from 18th century, three from 19th century, and one from 20th century, and thirteen bricks collected from a recent Archeological investigation of Alto da Sé, in the town of Olinda. Qualitative determination of the chemical elements present in the samples was undertaken using a self‐assembled portable XRF system based on a compact X‐ray tube and a thermoelectrically cooled Si‐PIN photodiode system, both commercially available. X‐ray diffraction analysis was also carried out to assess the crystalline mineral phases present in the bricks. The results showed that quartz (SiO2) is the major mineral content in all bricks. Although less expressive in the XRD patterns, mineral phases of illite, kaolinite, anorthite, and rutile are also identified. The trace element distribution patterns of the bricks, determined by the XRF technique, is dominated by Fe and, in decreasing order, by K, Ti, Ca, Mn, Zr, Rb, Sr, Cr, and Y with slight differences among them. Analyses of the chemical compositional features of the bricks, evaluated by principal component analysis of the XRF datasets, allowed the samples to be grouped into five clusters with similar chemical composition. These cluster groups were able to identify both age and manufacturing sites. Dutch bricks prepared with different geological clays compositions were defined.  相似文献   

14.
The ability of molecular dynamics (MD) simulations to support the analysis of X‐ray absorption fine‐structure (XAFS) data for metals is evaluated. The low‐order cumulants (ΔR, σ2, C3) for XAFS scattering paths are calculated for the metals Cu, Ni, Fe, Ti and Au at 300 K using 28 interatomic potentials of the embedded‐atom method type. The MD cumulant predictions were evaluated within a cumulant expansion XAFS fitting model, using global (path‐independent) scaling factors. Direct simulations of the corresponding XAFS spectra, χ(R), are also performed using MD configurational data in combination with the FEFFab initio code. The cumulant scaling parameters compensate for differences between the real and effective scattering path distributions, and for any errors that might exist in the MD predictions and in the experimental data. The fitted value of ΔR is susceptible to experimental errors and inadvertent lattice thermal expansion in the simulation crystallites. The unadjusted predictions of σ2 vary in accuracy, but do not show a consistent bias for any metal except Au, for which all potentials overestimate σ2. The unadjusted C3 predictions produced by different potentials display only order‐of‐magnitude consistency. The accuracy of direct simulations of χ(R) for a given metal varies among the different potentials. For each of the metals Cu, Ni, Fe and Ti, one or more of the tested potentials was found to provide a reasonable simulation of χ(R). However, none of the potentials tested for Au was sufficiently accurate for this purpose.  相似文献   

15.
A portable energy dispersive X-ray fluorescence (XRF) spectrometer furnished with an Rh X-ray tube was evaluated for the determination of macronutrients and micronutrients in soybean leaves (Glycine max L.). XRF instrumental parameters were optimized in a univariate way, and emission intensities were measured for 60 s and under vacuum for macronutrients, and during 180 s, under air, and 305 μm Al/25.4 μm Ti filter, for micronutrients. Fresh and dried leaves were irradiated, and it was possible to identify P, K, Ca, S, Mn, Fe, Cu, and Zn Kα emission lines. For comparative purpose, the samples were also microwave assisted, digested and analyzed by inductively coupled plasma optical emission spectrometry. In general, linear correlations between K, Ca, Mn, Fe, Cu, and Zn concentrations in the tested samples and the corresponding portable XRF (pXRF) intensities were obtained. The linear correlation coefficients (R2) ranged from 0.42 to 0.86. In addition, the detection limits were suitable for plant nutrient diagnosis. It is demonstrated that pXRF is a simple and powerful tool for analysis of plant materials.  相似文献   

16.
Using a miniature X‐ray tube and silicon PiN diode detector, an approach to measuring lead (Pb) in bone phantoms was tested. The X‐ray tube was used to excite L‐line X‐ray fluorescence (L‐XRF) of lead in bone phantoms. The bone phantoms were made from plaster of Paris and dosed with varying quantities of lead. Phantoms were made in two sets with different shapes to model different bone surfaces. One set of bone phantoms was circular in cross‐section (2.5‐cm diameter), the other square in cross‐section (2.2 cm × 2.2 cm). Using an irradiation time of 180 s (real time), five trials were run for each bone phantom. Analysis was performed for both Lα and Lβ lead X‐rays. Based on these calibration trials, (3σ0/slope) minimum detection limits of 7.4 ± 0.3 µg Pb g?1 (circular cross‐section) and 8.6 ± 0.6 µg Pb g?1 (square cross‐section) were determined for the bare bone phantoms. To simulate a more realistic in vivo scenario with soft tissue overlying bone, further trials were performed with a resin material placed between the experimental system and the bone phantom. For the square cross‐section bone phantoms, a layer of resin with a thickness of 1.2 mm was used, and a minimum detection limit of 17 ± 3 µg Pb g?1 determined. For the circular cross‐section phantoms, a layer of resin with an average thickness of 2.7 mm was used. From these, a more realistic minimum detection limit for in vivo applications (43 ± 7 µg Pb g?1) was determined. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
X‐ray absorption fine‐structure (XAFS) data were obtained for the V K‐edge for a series of anisotropic single crystals of (CrxV1–x)2O3. The data and the results were compared for the as‐prepared bulk single crystals (measured in fluorescence in two different orientations) and those ground to powder (measured in transmission). For the bulk single crystals, the glancing‐emergent‐angle (GEA) method was used to minimize fluorescence distortion. The reliability of the GEA technique was tested by comparing the polarization‐weighted single‐crystal XAFS data with the experimental powder data. These data were found to be in excellent agreement throughout the entire energy range. Thus, it was possible to reliably measure individual V–V contributions parallel and perpendicular to the c axis of the single crystals, i.e. those unavailable by powder data XAFS analysis. These experiments demonstrate that GEA is a premiere method for non‐destructive high‐photon‐count in situ studies of local structure in bulk single crystals.  相似文献   

18.
X‐ray absorption near‐edge spectroscopy (XANES) at the Mn K‐edge was used to investigate the environment of Mn in situ within the growth increments of the long‐lived freshwater bivalve species Diplodon chilensis patagonicus. Single XANES spectra and Mn Kα fluorescence distributions were acquired at submillimetre resolution (up to 100 µm × 50 µm), at Mn concentrations below the weight percent range (100–1000 µg g?1) in a high Ca matrix. The position and intensity of the pre‐edge feature in the shell spectrum resembles best that of the Mn(II)‐bearing reference compounds, suggesting that this is the oxidation state of Mn in the bivalve shells. By comparison with the XANES spectra of selected standard compounds, hypotheses about Mn speciation in the shell are also reported. In particular, different factors, such as provenance, ontogenetic age, variable Mn‐concentrations or seasonal shell deposition seem not to influence the speciation of the metal in this bivalve species.  相似文献   

19.
We measured the Raman spectra of ZnO nanoparticles (ZnO‐NPs), as well as transition‐metal‐doped (5% Mn(II), Fe(II) or Co(II)) ZnO nanoparticles, with an average size of 9 nm. A typical Raman peak at 436 cm−1 is observed in the ZnO‐NPs, whereas Zn1−xMnxO, Zn1−xFexO and Zn1−xCoxO presented characteristic peaks at 661, 665 and 675 cm−1, respectively. These peaks can be related to the formation of Mn3O4, Fe3O4 and Co3O4 species in the doped ZnO‐NPs. Moreover, these samples were analyzed at various laser powers. Here, we observed new vibrational modes (512, 571 and 528 cm−1), which are specific to Mn, Fe and Co dopants, respectively, and ZnO‐NPs did not reveal any additional modes. The new peaks were interpreted either as disorder activated phonon modes or as local vibrations of Mn‐, Fe‐ and Co‐related complexes in ZnO. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
《X射线光谱测定》2003,32(6):413-417
Using energy‐dispersive x‐ray fluorescence analysis with an 125I ring source, it was possible to determine the concentration of several elements, such as Mn, Fe, Cu, Zn, Br, Rb and Sr, at the µg g?1 level in a microorganism (Mycobacterium fortuitum) and in nutrient medium. It was observed that the bacteria always incorporated a fixed amount of a given element even if the concentration in the nutrient medium was different. It was possible to contaminate the cells also with Zr. The sample preparation and irradiation process developed is a non‐destructive microorganism analytical method, as about 70% of the bacteria survived the measuring process. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号