首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
An attempt for a theoretical treatment of radiationless transitions from excited charge-transfer states in molecular complexes is made within the framework of the statistical limit of radiationless transitions theory. This work deals with the S1 → S0 internal conversion in charge-transfer complexes of tetracyanoethylene (an electron acceptor) with benzene and toluene and their perdeuterated analogues. A dominant role of the high-frequency totally symmetric intramolecular vibrational modes in the nonradiative decay of excited charge-transfer states is assumed (this was inferred from the experimentally observed deuterium isotope effect on radiationless S1 → S0 transitions). Calculated absolute rate constants for internal conversion are found to be in good agreement with experimental ones. The results of our calculations reflect very well the observed moderate deuterium isotope effect.  相似文献   

2.
Polypyridine ruthenium sulfoxide complexes are intriguing compounds which can display both photochromic and electrochromic properties. These properties are based on the Ru-S → Ru-O linkage isomerization capability of the sulfoxide group. The photoisomerization mechanism is of particular importance in order to understand the photophysical properties of such molecules. Density functional theory calculations demonstrate that the main photoisomerization mechanism is nonadiabatic for the system under study in agreement with the experimental observations. Indeed, funnels for efficient radiationless decay back to the ground state are shown to be easily accessible compared to transition states on the adiabatic triplet potential energy surface. However, we highlight for the first time that triplet metal-centered states play a central role in the photoisomerization mechanism of these compounds.  相似文献   

3.
Mechanism of phototriggered isomerization of azobenzene and its derivatives is of broad interest. In this paper, the S(0) and S(1) potential energy surfaces of the ethylene-bridged azobenzene (1) that was recently reported to have highly efficient photoisomerization were determined by ab initio electronic structure calculations at different levels and further investigated by a semiclassical dynamics simulation. Unlike azobenzene, the cis isomer of 1 was found to be more stable than the trans isomer, consistent with the experimental observation. The thermal isomerization between cis and trans isomers proceeds via an inversion mechanism with a high barrier. Interestingly, only one minimum-energy conical intersection was determined between the S(0) and S(1) states (CI) for both cis → trans and trans → cis photoisomerization processes and confirmed to act as the S(1) → S(0) decay funnel. The S(1) state lifetime is ~30 fs for the trans isomer, while that for the cis isomer is much longer, due to a redistribution of the initial excitation energies. The S(1) relaxation dynamics investigated here provides a good account for the higher efficiency observed experimentally for the trans → cis photoisomerization than the reverse process. Once the system decays to the S(0) state via CI, formation of the trans product occurs as the downhill motion on the S(0) surface, while formation of the cis isomer needs to overcome small barriers on the pathways of the azo-moiety isomerization and rotation of the phenyl ring. These features support the larger experimental quantum yield for the cis → trans photoisomerization than the trans → cis process.  相似文献   

4.
Detailed simulation study is reported for the excited-state dynamics of photoisomerization of cis-tetraphenylethylene (TPE) following excitation by a femtosecond laser pulse. The technique for this investigation is semiclassical dynamics simulation, which is described briefly in the paper. Upon photoexcitation by a femtosecond laser pulse, the stretching motion of the ethylenic bond of TPE is initially excited, leading to a significant lengthening of ethylenic bond in 300 fs. Twisting motion about the ethylenic bond is activated by the energy released from the relaxation of the stretching mode. The 90 degrees twisting about the ethylenic bond from an approximately planar geometry to nearly a perpendicular conformation in the electronically excited state is completed in 600 fs. The torsional dynamics of phenyl rings which is temporally lagging behind occurs at about 5 ps. Finally, the twisted TPE reverts to the initial conformation along the twisting coordinate through nonadiabatic transitions. The simulation results provide a basis for understanding several spectroscopic observations at molecular levels, including ultrafast dynamic Stokes shift, multicomponent fluorescence, viscosity dependence of the fluorescence lifetime, and radiationless decay from electronically excited state to the ground state along the isomerization coordinate.  相似文献   

5.
Vibrational energy relaxation (VER) of the Fermi polyads in the CH stretching vibration of the benzene dimer (Bz(2)) and trimer (Bz(3)) has been investigated by picosecond (ps) time-resolved IR-UV pump-probe spectroscopy in a supersonic beam. The vibrational bands in the 3000-3100 cm(-1) region were excited by a ps IR pulse and the time evolutions at the pumped and redistributed (bath) levels were probed by resonance enhanced multiphoton ionization with a ps UV pulse. For Bz(2), a site-selective excitation in the T-shaped structure was achieved by using the isotope-substituted heterodimer hd, where h = C(6)H(6) and d = C(6)D(6), and its result was compared with that of hh homodimer. In the hd heterodimer, the two isomers, h(stem)d(top) and h(top)d(stem), show remarkable site-dependence of the lifetime of intracluster vibrational energy redistribution (IVR); the lifetime of the Stem site [h(stem)d(top), 140-170 ps] is ~2.5 times shorter than that of the Top site [h(top)d(stem), 370-400 ps]. In the transient UV spectra, a broad electronic transition due to the bath modes emerges and gradually decays with a nanosecond time scale. The broad transition shows different time profile depending on UV frequency monitored. These time profiles are described by a three-step VER model involving IVR and vibrational predissociation: initial → bath1(intramolecular) → bath2(intermolecular) → fragments. This model also describes well the observed time profile of the Bz fragment. The hh homodimer shows the stepwise VER process with time constants similar to those of the hd dimer, suggesting that the excitation-exchange coupling of the vibrations between the two sites is very weak. Bz(3) also exhibited the stepwise VER process, though each step is faster than Bz(2).  相似文献   

6.
7.
We have simulated the photodynamics of azobenzene by means of the Surface Hopping method. We have considered both the trans → cis and the cis → trans processes, caused by excitation in the n → π* band (S(1) state). To bring out the solvent effects on the excited state dynamics, we have run simulations in four different environments: in vacuo, in n-hexane, in methanol, and in ethylene glycol. Our simulations reproduce very well the measured quantum yields and the time dependence of the intensity and anisotropy of the transient fluorescence. Both the photoisomerization and the S(1) → S(0) internal conversion require the torsion of the N═N double bond, but the N-C bond rotations and the NNC bending vibrations also play a role. In the trans → cis photoconversion the N═N torsional motion and the excited state decay are delayed by increasing the solvent viscosity, while the cis → trans processes are less affected. The analysis of the simulation results allows the experimental observations to be explained in detail, and in particular the counterintuitive increase of the trans → cis quantum yield with viscosity, as well as the relationship between the excited state dynamics and the solvent effects on the fluorescence lifetimes and depolarization.  相似文献   

8.
9.
Spectral and photochemical properties of 1-(9-anthryl)-2-(2-quinolyl)ethylene (9A2QE) in neutral and protonated forms have been studied experimentally and by quantum-chemical methods. It has been found that the quantum yield of trans-cis photoisomerization (φtc) has values of φtc < 0.5 typical of the diabatic photoisomerization for both forms of 9A2QE. A comparison of this data with the results of the study of other aza-diarylethylenes containing the 2-styrylquinoline (2SQ) moiety has led to the general conclusion that the increase in the π-system in 2SQ upon fusion of the benzene rings results in the disappearance of the α-effect, which lies in the fact that the quantum yield increases upon going from the neutral to protonated form up to the values φtc > 0.5, which exceeds the limiting value for the diabatic photoisomerization.  相似文献   

10.
The E ? Z photoisomerization of the title compound (UA) (a naturally occurring sunscreen) has been studied in aqueous solution. At a UA concentration of 6mM and using 313nm excitation, φE→z= 0.52, φZ→E= 0.47 and the photostationary state is 34% E. Under these conditions, loss of UA is minimal. Low energy triplet quenchers fail to impede the isomerization, but the reaction can be induced by several triplet sensitizers. The ET for UA is estimated to be approximately 55 kcal/mol.  相似文献   

11.
Azobenzenes are used in many applications because of their robust and reversible light induced trans?cis isomerization about the N=N bond, but the mechanism of this ultrafast reaction has not been conclusively defined. Addressing this problem we have used Femtosecond Stimulated Raman Spectroscopy (FSRS) to determine the structural transients in the trans→cis photoisomerization of the azobenzene derivative, 4-nitro-4'-dimethylamino-azobenzene (NDAB). Key marker modes, such as the 1570/1590 cm(-1) NO(2) stretch and the 1630 cm(-1) C-N(Me)(2) stretch, enable the separation and analysis of distinct trans and cis photoproduct dynamics revealing the 400 fs Frank-Condon relaxation, the 800 fs timescale of the cis product formation and the 2 ps emergence and 8 ps relaxation of the unsuccessful ground state trans species. Based on these observations, we propose a reaction mechanism, including initial dilation of the CNN bend later joined by quick movement along the CCNN, CNNC and NNCC torsional coordinates that constitutes a mixed inversion-rotation mechanism.  相似文献   

12.
We have studied the cis-->trans and trans-->cis photoisomerization of azobenzene after n-->pi* excitation using the full multiple spawning (FMS) method for nonadiabatic wave-packet dynamics with potential-energy surfaces and couplings determined "on the fly" from a reparametrized multiconfigurational semiempirical method. We compare the FMS results with a previous direct dynamics treatment using the same potential-energy surfaces and couplings, but with the nonadiabatic dynamics modeled using a semiclassical surface hopping (SH) method. We concentrate on the dynamical effects that determine the photoisomerization quantum yields, namely, the rate of radiationless electronic relaxation and the character of motion along the reaction coordinate. The quantal and semiclassical results are in good general agreement, confirming our previous analysis of the photodynamics. The SH method slightly overestimates the rate of excited state decay, leading in this case to lower quantum yields.  相似文献   

13.
In electron donor/acceptor species such as 4-(dimethylamino)benzonitrile (DMABN), the excitation to the S(2) state is followed by internal conversion to the locally excited (LE) state. Dual fluorescence then becomes possible from both the LE and the twisted intramolecular charge-transfer (TICT) states. A detailed mechanism for the ICT of DMABN and 4-aminobenzonitrile (ABN) is presented in this work. The two emitting S(1) species are adiabatically linked along the amino torsion reaction coordinate. However, the S(2)/S(1) CT-LE radiationless decay occurs via an extended conical intersection "seam" that runs almost parallel to this torsional coordinate. At the lowest energy point on this conical intersection seam, the amino group is untwisted; however, the seam is accessible for a large range of torsional angles. Thus, the S(1) LE-TICT equilibration and dual fluorescence will be controlled by (a) the S(1) torsional reaction path and (b) the position along the amino group twist coordinate where the S(2)/S(1) CT-LE radiationless decay occurs. For DMABN, population of LE and TICT can occur because the two species have similar stabilities. However, in ABN, the equilibrium lies in favor of LE, as a TICT state was found at much higher energy with a low reaction barrier toward LE. This explains why dual fluorescence cannot be observed in ABN. The S(1)-->S(0) deactivation channel accessible from the LE state was also studied.  相似文献   

14.
The excited-state behavior of a series of trans-2-(N-arylamino)stilbenes (aryl = phenyl (o1H), 4-methylphenyl (o1Me), 4-methoxyphenyl (o1OM), and 4-cyanophenyl (o1CN)) and trans-2-(N,N-diphenylamino)stilbene (o2) in both nonpolar and polar solvents is reported and compared to that of the parent trans-2-aminostilbene and the corresponding meta- and para-isomers (m1R and p1R, where R = H, Me, OM, and CN, and m2 and p2). Two types of torsional motions, the D-A torsion that results in a nonfluorescent twisted intramolecular charge transfer (TICT) state and the C═C torsion that leads to the cis isomers, account for the radiationless decays of o1R and o2. The relative efficiencies of these torsions can be readily evaluated from their quantum yields for fluorescence (Φ(f)) and trans → cis isomerization (Φ(tc)). The propensities of the D-A torsion are similar for the ortho and meta isomers, which is 1OM > 1Me and negligible for 1H, 1CN, and 2. The activation parameters determined from temperature-dependent fluorescence lifetimes suggest that the C═C torsion occurs mainly via the triplet state for the ortho systems, a behavior again similar to that of the meta isomers. Whereas the intersystem crossing in o1R, m1R, and m2 is essentially a nonactivated process, it encounters a barrier of 2.7-3.8 kcal mol(-1) in o2. As a result of the barriers that decelerate the radiationless decays and the slow fluorescence rate for o2 in acetonitrile, the observed long fluorescence lifetime 24.5 ns at room temperature reaches a new record for unconstrained trans-stilbenes.  相似文献   

15.
Optic—acoustic measurements have been employed in the determination of absolute quantum yields for benzene and naphthalene. Heat yields are measured by a method using oxygen quenching of both triplet and singlet states. For vibrationally relaxed excited singlet states the fluorescence quantum yields, φBf, are 0.16 ± 0.02 and 0.79 ± 0.02 for benzene and naphthalene respectively. For 0.07 torr naphthalene at room temperature with 248 nm excitation, φf = 0.35 ± 0.03 and the quantum yield of internal conversion is less than 0.05. The decay of the highly vibrationally excited triplet state is dominated by vibrational relaxation for 0.07 torr naphthalene, but for benzene, even at high pressures, strong competition comes from an indirect coupling process to the ground state.  相似文献   

16.
Synchrotron radiation with its intense continuum and its excellent time structure has been exploited for time resolved luminescence spectroscopy in the solid state. By selective excitation of n = 1, n′ = 2 exciton states of Xe, Kr and Ar atoms in a neon matrix we were able to identify the emitting states involved. Lifetimes within the cascade of radiative and radiationless relaxation between excited states as well as the radiative lifetimes for transitions to the ground state have been derived from the decay curves. Energy positions and radiative lifetimes of the emitting states correspond quite well with those of the free atoms. Radiative and radiationless relaxation processes take place within the manifold of excited states of the guest atoms. The rate constants for radiationless decay confirm an energy gap law. The order of the radiationless processes reaches in some cases extremely high values. Selection rules for spin and angular momentum are essential to understand the observed radiationless transition rates.  相似文献   

17.
CASPT2//CASSCF photoisomerization path computations have been used to unveil the effects of an acetate counterion on the photochemistry of two retinal protonated Schiff base (PSB) models: the 2-cis-penta-2,4-dieniminium and the all-trans-epta-2,4,6-trieniminium cations. Different positions/orientations of the counterion have been investigated and related to (i) the spectral tuning and relative stability of the S0, S1, and S2 singlet states; (ii) the selection of the photochemically relevant excited state; (iii) the control of the radiationless decay and photoisomerization rates; and, finally, (iv) the control of the photoisomerization stereospecificity. A rationale for the results is given on the basis of a simple (electrostatic) qualitative model. We show that the model readily explains the computational results providing a qualitative explanation for different aspects of the experimentally observed "environment" dependent PSB photochemistry. Electrostatic effects likely involved in controlling retinal photoisomerization stereoselectivity in the protein are also discussed under the light of these results, and clues for a stereocontrolled electrostatically driven photochemical process are presented. These computations provide a rational basis for the formulation of a mechanistic model for photoisomerization electrostatic catalysis.  相似文献   

18.
Multiple infrared photon excitation of propynal triplet molecules gives rise to a strongly perturbed phosphorescence. Following absorption of a few IR photons per molecule the phosphorescence spectrum extends to higher energy, the intensity increases, the decay — deviating from the original exponential decay — accelerates and the emission quantum yield drops dramatically. These findings are explained in terms of temperature sensitive radiative (T1 → S0) and radiationless (T1 → S0) processes with the vibrational temperature as the determining factor. During the perturbed triplet decay, the IR excitation initially confined to the vibrational degrees of freedom becomes distributed among all degrees of freedom which results in a decrease in the vibrational temperature and thus a complex phosphorescence decay.  相似文献   

19.
采用多组态CASSCF方法和MS-CASPT2方法研究了丁烯二腈中性分子及阳离子和阴离子的顺-反异构化机理.结果表明,中性分子和离子态的光顺-反异构化反应经历不同的非绝热跃迁途径:中性丁烯二腈受光激发至S1态后,需克服一个不低于19.7 k J/mol的能垒才有机会到达基态和激发态间的圆锥交叉(S_1/S_0-CI),随后经非辐射跃迁回到基态,S_1/S_0-CI在结构上偏离C=C双键旋转路径,且能量较高,因此会降低旋转速度,阻碍旋转的单向性;丁烯二腈阳离子和阴离子自由基的D_0态和D_1态旋转势能面在90°处相交,优化的D_1/D_0-CI与D_1态中间体的结构和能量均相近,因此从D1态经由D_1/D_0-C_I无辐射跃迁到D_0态的过程无势垒,在此过程中C=C旋转方向性得到最大限度的保持.研究结果证实了电子诱导不仅能降低基态热旋转势垒,而且能够调控光旋转的非绝热跃迁机理.  相似文献   

20.
In this work we have studied the relaxation dynamics of the many-body polarizability anisotropy in liquid mixtures of benzene (Bz) and hexafluorobenzene (Hf) at room temperature by femtosecond optical heterodyne-detected Raman-induced Kerr effect spectroscopy (OHD-RIKES) experiments and molecular dynamics (MD) simulations. The computed polarizability response arising from intermolecular interactions was included using the first-order dipole-induced-dipole model with the molecular polarizability distributed over the carbon sites of each molecule. We found good qualitative agreement between experiments and simulations in the features exhibited by the nuclear response function R(t) for pure liquids and mixtures. The long-time diffusive decay of R(t) was observed to vary substantially with composition, slowing down noticeably with dilution of each of the species as compared with that in the corresponding pure liquids. MD simulation shows that the effect on R(t) is due to the formation of strong and localized intermolecular association between Bz and Hf species that hinder the rotational diffusive dynamics. The formation of these Bz-Hf complexes in the liquid mixtures also modifies the rotational diffusive dynamics of the component species in such a way that cannot be explained solely in terms of a viscosity effect. Even though the computed orientational diffusive relaxation times associated with Bz and Hf are larger by a factor of approximately 2 than those from experiments, we found similar trends in experiments and simulations for these characteristic times as a function of composition. Namely, the collective and single-molecule orientational correlation times associated with Bz are observed to grow monotonically with the dilution of Bz, while those corresponding to Hf species exhibit a maximum at the equimolar composition. We attribute the quantitative discrepancy between experiments and simulations to the use of the Williams potential, which seems to overestimate the intermolecular interactions and thus predicts not only a slower translational dynamics but also a slower rotational diffusion dynamics than in real fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号