首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Elemental and isotopic determination of americium and curium in spent nuclear fuels is necessary to validate neutronic calculation codes and for nuclear waste disposal purposes. Prior to mass spectrometric analysis, it is mandatory to perform separations in order to eliminate isobaric interferences between U, Pu, Am and Cm. In the spent fuels samples analyzed, a separation of U and Pu has been first realized with an anion-exchange resin. Then a rapid Am/Cm separation has been developed by high-performance liquid chromatography (HPLC) with an on-line detection using the Am and Cm α-emission. The influence of the different parameters on the chromatographic separation are described and discussed. Inductively coupled plasma mass spectrometry (ICP-MS) and thermal-ionization mass spectrometry (TIMS) have been used to measure the isotopic composition of U, Am and Cm and to determine the 241Am/238U and 244Cm/238U ratios with the double spike isotope dilution method. The measurement procedures and the accuracy and precision of the results obtained with a quadrupole ICP-MS on different spent fuels samples are discussed and compared with those obtained by TIMS, used as a reference technique. Received: 30 November 1998 / Revised: 8 January 1999 / Accepted: 12 January 1999  相似文献   

2.
Assays of alpha- and beta-emitting radionuclides in swipe samples are often required to monitor the presence of removable surface contamination for radiological protection and control in nuclear facilities. Swipe analysis has also proven to be a very sensitive analytical technique to detect nuclear signatures for safeguard verification purposes. A new sequential method for the determination of actinide isotopes and radiostrontium in swipe samples, which utilizes a streamlined column separation with stacked anion and extraction chromatography resins, has been developed. To validate the separation procedure, spike and blank samples were prepared and analyzed by inductively coupled mass spectrometry (ICP-MS), alpha spectrometry and liquid scintillation (LS) counting. Low detection limits have been achieved for isotopic analysis of Pu (238Pu, 239Pu, 240Pu, 241Pu), U (234U, 235U, 238U), Am (241Am), Cm (242Cm, 243/244Cm) and Sr (90Sr) at ultra-trace concentration levels in swipe samples.  相似文献   

3.
Determination of 238Pu in plutonium bearing fuels is required as a part of the chemical quality assurance of nuclear fuels. In addition, the determination of 238Pu is required in nuclear technology for many other applications, e.g., for developing isotope correlations and while using 238Pu as a spike (tracer) in isotope dilution α-spectrometry (IDAS). This determination usually involves the use of α-spectrometry on purified Pu sample. In view of the random errors associated with the counting statistics and the systematic errors due to (1) in-growth of 241Am in purified Pu sample and (2) tail contribution correction methodology in α-spectrometry, the precision and accuracy obtainable by α-spectrometry are limited. Thermal ionization mass spectrometry (TIMS) is generally used for the determination of different Pu isotopes other than 238Pu. This is due to the ubiquitous isobaric interference from 238U at 238Pu in TIMS. Recently, we have carried out studies on the formation of atomic and oxide ions of U and Pu by TIMS and developed a novel approach using interfering element correction methodology to account for the isobaric interference of 238U at 238Pu in TIMS. This methodology is based on the addition of 235U (enrichment >90 atom%) to Pu sample followed by the determination of 238U/235U atom ratio using UO+ ion and determination of Pu isotope ratios using Pu+ ion, from the same filament loading. The TIMS methodology was used for the determination of 238Pu in different Pu samples in U based nuclear fuels from PHWRs with 238Pu content about 0.2 atom%. The 238Pu determination was also carried out using α-spectrometry. This paper reports the results obtained by the two methods and presents the ments and shortcomings of the two approaches.  相似文献   

4.
A new rapid separation method that allows separation and preconcentration of actinides in urine samples was developed for the measurement of longer lived actinides by inductively coupled plasma mass spectrometry (ICP-MS) and short-lived actinides by alpha spectrometry; a hybrid approach. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration, if required, is performed using a streamlined calcium phosphate precipitation. Similar technology has been applied to separate actinides prior to measurement by alpha spectrometry, but this new method has been developed with elution reagents now compatible with ICP-MS as well. Purified solutions are split between ICP-MS and alpha spectrometry so that long- and short-lived actinide isotopes can be measured successfully. The method allows for simultaneous extraction of 24 samples (including QC samples) in less than 3 h. Simultaneous sample preparation can offer significant time savings over sequential sample preparation. For example, sequential sample preparation of 24 samples taking just 15 min each requires 6 h to complete. The simplicity and speed of this new method makes it attractive for radiological emergency response. If preconcentration is applied, the method is applicable to larger sample aliquots for occupational exposures as well. The chemical recoveries are typically greater than 90%, in contrast to other reported methods using flow injection separation techniques for urine samples where plutonium yields were 70-80%. This method allows measurement of both long-lived and short-lived actinide isotopes. 239Pu, 242Pu, 237Np, 243Am, 234U, 235U and 238U were measured by ICP-MS, while 236Pu, 238Pu, 239Pu, 241Am, 243Am and 244Cm were measured by alpha spectrometry. The method can also be adapted so that the separation of uranium isotopes for assay is not required, if uranium assay by direct dilution of the urine sample is preferred instead. Multiple vacuum box locations may be set-up to supply several ICP-MS units with purified sample fractions such that a high sample throughput may be achieved, while still allowing for rapid measurement of short-lived actinides by alpha spectrometry.  相似文献   

5.
In the nuclear domain, precise and accurate isotopic composition determination of elements in spent nuclear fuels is mandatory to validate neutron calculation codes and for nuclear waste disposal. The present study presents the results obtained on Cs isotope ratio by mass spectrometric measurements. Natural cesium is monoisotopic (133Cs) whereas cesium in spent fuels has 4 isotopes (133Cs, 134Cs, 135Cs, and 137Cs). As no standard reference material is available to evaluate the accuracy of Cs isotopic measurements, a comparison of cesium isotopic composition in spent nuclear fuels has been performed between Thermal Ionization Mass Spectrometry (TIMS) and a new method involving Multiple Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) measurements. For TIMS measurements, isotopic fractionation has been evaluated by studying the behavior of cesium isotope ratios (133Cs/137Cs and 135Cs/137Cs) during the analyses. For MC-ICPMS measurements, the mass bias effects have been corrected with an external mass bias correction using elements (Eu and Sb) close to cesium masses. The results obtained by the two techniques show good agreement: relative difference on 133Cs/137Cs and 135Cs/137Cs ratios for two nuclear samples, analyzed after chemical separation, ranges from 0.2% to 0.5% depending on the choice of reference value for mass bias correction by MC-ICPMS. Finally the quantification of the 135Cs/238U ratio by the isotope dilution technique is presented in the case of a MOx (mixed oxide) spent fuel sample. Evaluation of the global uncertainties shows that this ratio could be defined at an uncertainty of 0.5% (k = 2). The intercomparison between two independent mass spectrometric techniques is fundamental for the evaluation of uncertainty when no isotopic standard is available.  相似文献   

6.
A new method that allows rapid preconcentration and separation of plutonium and neptunium in water samples was developed for the measurement of 237Np and Pu isotopes by inductively-coupled plasma mass spectrometry (ICP-MS) and alpha spectrometry. 238U can interfere with 239Pu measurement by ICP-MS as 238UH+ mass overlap and 237Np via peak tailing. The method provide enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then moving Pu to DGA resin for additional removal of uranium. The decontamination factor for uranium from Pu is almost 100,000 and the decontamination factor for U from Np is greater than 10,000. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration is performed using a streamlined calcium phosphate precipitation method. Purified solutions are split between ICP-MS and alpha spectrometry so that long and short-lived Pu isotopes can be measured successfully. The method allows for simultaneous extraction of 20 samples (including QC samples) in 4?C6 h, and can also be used for emergency response. 239Pu, 242Pu and 237Np were measured by ICP-MS, while 236Pu, 238Pu, and 239Pu were measured by alpha spectrometry.  相似文献   

7.
Environmental contamination by artificial radionuclides and the evaluation of their sources require precise isotopic analysis and accurate determination of actinide elements above all plutonium and americium. These can be achieved by alpha spectrometry or by inductively coupled plasma mass spectrometry (ICP-MS) after chemical separation. In the present work, a simple, rapid method has been developed for the sequential separation of actinide elements from aqueous solutions and their determination by alpha spectrometry. Extraction chromatography was applied to the separation of 241Am, 244Cm, 239 + 240,238Pu, 237Np and 238,235,234U using microporous polyethylene supporting tri-n-octylamine as the stationary phase and hydrochloric acid with and without reducing agents as the mobile phase. Actinide in 9 M HCl solution is introduced into the anion exchange column; Pu (IV), Np (IV) and U(VI) are retained on the column while Am (III) and Cm passed through. Pu is eluted first, reductively, after which, Np and then U are eluted. The method can be applied to all aqueous solutions which do not contain strong complexing or precipitation agents for the elements considered.  相似文献   

8.
Summary We have used inductively coupled plasma mass spectrometry (ICP-MS) as the primary tool for determining concentrations of a suite of nuclides in samples excised from high-burnup spent nuclear fuel rods taken from light water nuclear reactors. The complete analysis included the determination of 95Mo, 99Tc, 101Ru, 103Rh, 109Ag, 137Cs, 143Nd, 145Nd,148Nd,147Sm, 149Sm, 150Sm, 151Sm, 152Sm, 151Eu, 153Eu, 155Eu, 155Gd, 237Np, 234U, 235U, 236U, 238U, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 242mAm, and 243Am. The isotopic composition of fissiogenic lanthanide elements was determined using high-performance liquid chromatography (HPLC) with ICP-MS detection. These analytical results allow the determination of fuel burn-up based on 148Nd, Pu, and U content, as well as provide input for storage and disposal criticality calculations. Results show that ICP-MS along with HPLC-ICP-MS are suitable of performing routine determinations of most of these nuclides, with an uncertainty of ±10% at the 95% confidence level.  相似文献   

9.
Micro-particles containing actinides are of interest for risk assessments of contaminated areas, nuclear forensic analyses, and IAEA as well as Euratom safeguards programs. For their analysis, secondary ion mass spectrometry (SIMS) has been established as the state-of-the-art standard technique. In the case of actinide mixtures within the particles, however, SIMS suffers from isobaric interferences (e.g., 238U/238Pu, 241Am/241Pu). This can be eliminated by applying resonance ionization mass spectrometry which is based on stepwise resonant excitation and ionization of atoms with laser light, followed by mass spectrometric detection of the produced ions, combining high elemental selectivity with the analysis of isotopic compositions. This paper describes the instrumental modifications for coupling a commercial time-of-flight (TOF)-SIMS apparatus with three-step resonant post-ionization of the sputtered neutrals using a high-repetition-rate (kHz) Nd:YAG laser pumped tunable titanium:sapphire laser system. Spatially resolved ion images obtained from actinide-containing particles in TOF-SIMS mode demonstrate the capability for isotopic and spatial resolution. Results from three-step resonant post-ionization of bulk Gd and Pu samples successfully demonstrate the high elemental selectivity of this process.  相似文献   

10.
Precise long-term measurements of uranium and thorium isotope ratios was carried out in 1 μg/L solutions using a quadrupole inductively coupled plasma mass spectrometer (ICP-QMS). The isotopic ratios of uranium (235U/ 238U = 1, 0.02 and 0.00725) were determined using a cross-flow nebulizer (CFN, at solution uptake rate of 1 mL/min) and a low-flow microconcentric nebulizer (MCN, at solution uptake rate of 0.2 mL/min) over 20 h. For 1 μg/L uranium solution (235U/238U = 1) relative external standard deviations (RESDs) of 0.05% and 0.044% using CFN and MCN, respectively, can be achieved. Additional short term isotope ratio measurements using a direct injection high-efficiency nebulizer (DIHEN) of 1 μg/L uranium solution (235U/238U = 1) at a solution uptake rate of 0.1 mL/min yielded an RSD of 0.06–0.08%. The sensitivity of solution introduction by DIHEN for uranium, thorium and plutonium (145 MHz/ppm, 150 MHz/ppm and 177 MHz/ppm, respectively) increased significantly compared to CFN and MCN and the solution uptake rate can be reduced to 1 μL/ min in DIHEN-ICP-MS. Isotope ratio measurements at an ultralow concentration level (e.g. determination of 240Pu/ 239Pu isotope ratio in a 10 ng/L Pu waste solution) were carried out for the characterization of radioactive waste and environmental samples. Received: 1 December 1998 / Revised: 25 January 1999 / Accepted: 31 January 1999  相似文献   

11.
The isotopic composition of single uranium and plutonium particles was measured with an inductively coupled plasma mass spectrometer (ICP-MS) and a thermal ionization mass spectrometer (TIMS). Particles deposited on a carbon planchet were first analyzed with an energy dispersive X-ray spectrometer (EDX) attached to a scanning electron microscope (SEM) and then transferred on to a silicon wafer using a manipulator. The particle on the silicon wafer was dissolved with nitric acid and the isotopic ratios of U and Pu were measured with ICP-MS and TIMS. The results obtained by both methods for particles of certified reference materials showed good agreement with the certified values within the expected uncertainty. The measurement uncertainties obtained in this study were similar for both mass spectrometric methods. This study was performed to establish the method of particle analysis with SEM, EDX, the particle manipulation and chemical preparation technique, and the measurement of isotopic ratios of U and Pu in a single particle by mass spectrometry.  相似文献   

12.
A direct simple and fast method was established, to overcome the influence of low and high level impurities on the measurement of 235U/238U isotopic ratio in nuclear spent fuel safeguard by thermal ionization mass spectrometry (TIMS), by using refractory metal oxide. The addition of refractory metal oxides forming solution (RMOFS), in certain proportions alongside with the spent fuel solution on the sample filaments were found to be useful during the analysis of uranium isotopic ratio by TIMS. RMOFS (with oxide melting point exceeding 2,000 °C), and particularly that of magnesium, were found to be very effective in improving the quality of the ion signal of 235U and 238U, when added without the need for prior purification. Solutions of chromium, cerium, thorium, and magnesium were investigated, to select the more convenient one, and it was found that magnesium was very useful to start with. The method was very simple, improve both the accuracy and precision of the collected data, reduce the time required to achieve steady uranium pilot signal, and hence the over all time of the analysis, regardless of the level of impurities present.  相似文献   

13.
234U of high isotopic purity (>99 atom%) as well as of high radiochemical, purity was separated from aged238Pu prepared by neutron irradiation of237Np. Methodologies based on ion exchange and solvent extraction procedures were used to achieve high decontamination factor from238Pu owing to the very high α-specific activity of238Pu (2800 times) in comparison to that of234U. Isotopic composition of purified234U was determined by thermal ionisation mass spectrometry. Alpha spectrometry was used for checking the radiochemical purity of234U with respect to concomitant α-emitting nuclides. The separated234U will be useful for different investigations using mass spectrometry and alpha spectrometry.  相似文献   

14.
Simultaneous isotopic analysis of uranium and plutonium using thermal ionization mass spectrometer coupled to a multi-collector detection assembly with 9 Faraday cups has been reported earlier. Subsequently investigations have been carried out (1) to understand the applicability of correction methodologies available to account for the contribution of238Pu at238U and (2) to evaluate the effectiveness of these methodologies on the accuracy of235U/238U atom ratio being determined, particularly when samples containing different U/Pu atom ratios. Isotopic fractionation for both U and Pu in the simultaneous isotopic analysis has been compared with the results of the individual analysis of these elements. The different isotopic fractionation factors observed for U were attributed to different conditions of analysis. There was no significant difference in the isotopic fractionation patterns for Pu. The consideration to extend this method to actual samples from our observations on synthetic samples with diferent U/Pu atom ratios containing U and Pu isotopic reference standards is described.  相似文献   

15.
A new method for the determination of (237)Np and Pu isotopes in large soil samples has been developed that provides enhanced uranium removal to facilitate assay by inductively coupled plasma mass spectrometry (ICP-MS). This method allows rapid preconcentration and separation of plutonium and neptunium in large soil samples for the measurement of (237)Np and Pu isotopes by ICP-MS. (238)U can interfere with (239)Pu measurement by ICP-MS as (238)UH(+) mass overlap and (237)Np via (238)U peak tailing. The method provides enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then transferring Pu to DGA resin for additional purification. The decontamination factor for removal of uranium from plutonium for this method is greater than 1×10(6). Alpha spectrometry can also be applied so that the shorter-lived (238)Pu isotope can be measured successfully. (239) Pu, (242)Pu and (237)Np were measured by ICP-MS, while (236)Pu and (238)Pu were measured by alpha spectrometry.  相似文献   

16.
An analytical method for the ultratrace and isotopic analysis of uranium in radioactive waste samples using a double-focusing sector field ICP mass spectrometer is described. In high-purity water a detection limit for uranium in the lowest fg/mL range has been achieved. Under optimum experimental conditions (235U/238U ≈ 1), the precision in 235U/238U isotopic ratio determinations has been determined as 0.07% RSD. With the isotopic standard U-020 (235U/238U = 0.0208) a precision of 0.23% RSD at the 100 pg/mL level using ultrasonic nebulization has been achieved. With 234U/238U isotopic ratios of down to 10–5, the values obtained by double-focusing sector field ICP-MS and alpha spectrometry were in agreement. Received: 27 February 1997 / Revised: 10 Juni 1997 / Accepted: 12 June 1997  相似文献   

17.
The neutron transmutation doping (NTD) of highly pure copper with zinc was investigated as a promising means of achieving controlled gradation of the zinc content in the range 1–20 μg g–1. The doping process leads to the enrichment of two stable isotopes 64Zn and 66Zn in a ratio which differs from that of natural isotopic distribution. Mass spectrometric investigations by thermal ionization mass spectrometry (TIMS) were performed to validate the results obtained by gamma spectrometry. The investigations included both determination of the isotopic ratios of the doped zinc isotopes and the analysis of the accumulated zinc contents by isotope dilution (ID) analysis. Thereby a sample-specific correction of the blank could be performed because the isotope 68Zn was not influenced, because of the transmutation process. The results obtained by TIMS prove the strict proportionality of the doped zinc content, in the range 5 to 20 μg g–1, to the neutron fluence. Comparison with gamma spectrometric results showed a very good agreement within the uncertainties.  相似文献   

18.
This paper describes the experimental studies carried out to determine (238)Pu, (239/40)Pu, (241)Pu, (241)Am, (242)Cm and (244)Cm in samples from nuclear power plants (mainly spent ion exchange resins and evaporator concentrates) using an organophosphorus compound immobilized on an inert support. These materials are commercially available under the name TRU Resin (for Transuranium Specific) from Eichrom Industries, Darien, IL. An attempt is made to develop a rapid, accurate method of analysis, with minimum waste generation. Standard solutions of Pu and Am and one sample of spent ion exchange resin that contains fission, activation products, Pu, Am and Cm were analyzed to study the separation factors and interferences in the measurement of Pu, Am and Cm isotopes.  相似文献   

19.
The natural variation of the oxygen isotopic composition is used among geologists to determine paleotemperatures and the origin of minerals. In recent studies, oxygen isotopic composition has been recognized as a possible tool for identification of the origin of seized uranium oxides in nuclear forensic science. In the last 10 years, great effort has been made to develop new direct and accurate n(18O)/n(16O) measurements methods. Traditionally, n(18O)/n(16O) analyses are performed by gas mass spectrometry. In this work, a novel oxygen isotope analysis by thermal ionization mass spectrometry (TIMS), using metal oxide ion species (UO+), is compared to the direct methods: glow discharge mass spectrometry (GDMS) and secondary ion mass spectrometry (SIMS). Because of the possible application of the n(18O)/n(16O) ratio in nuclear forensics science, the samples were solid, pure UO2 or U3O8 particles. The precision achieved using TIMS analysis was 0.04%, which is similar or even better than the one obtained using the SIMS technique (0.05%), and clearly better if compared to that of GDMS (0.5%). The samples used by TIMS are micrograms in size. The suitability of TIMS as a n(18O)/n(16O) measurement method is verified by SIMS measurements. In addition, TIMS results have been confirmed by characterizing the n(18O)/n(16O) ratio of UO2 sample also by the traditional method of static vacuum mass spectrometry at the University of Chicago.  相似文献   

20.
Quantification of actinides in the complex environmental, biological, process and waste streams samples requires multiple steps like selective preconcentration and matrix elimination, solid source preparations generally by evaporation or electrodeposition, and finally alpha spectrometry. To minimize the sample manipulation steps, a membrane based isotope dilution alpha spectrometry method was developed for the determination of plutonium concentrations in the complex aqueous solutions. The advantages of this method are that it is Pu(IV) selective at 3 M HNO3, high preconcentration factor can be achieved, and obviates the need of solid source preparation. For this, a thin phosphate-sulfate bifunctional polymer layer was anchored on the surface of microporous poly(ethersulfone) membrane by UV induced surface grafting. The thickness of the bifunctional layer on one surface of the poly(ethersulfone) membrane was optimized. The thickness, physical and chemical structures of the bifunctional layer were studied by secondary ionization mass spectrometry (SIMS), scanning electron microscopy (SEM) and SEM-EDS (energy-dispersive spectroscopy). The optimized membrane was used for preconcentration of Pu(IV) from aqueous solutions having 3-4 M HNO3, followed by direct quantification of the preconcentrated Pu(IV) by isotope dilution alpha spectrometry using 238Pu spike. The chemical recovery efficiency of Pu(IV) was found to be 86 ± 3% below Pu(IV) loading capacity (1.08 μg in 2 × 1 cm2) of the membrane sample. The experiments with single representative actinides indicated that Am(III) did not sorb to significant extent (7%) but U(VI) sorbed with 78 ± 3% efficiency from the solutions having 3 M HNO3 concentration. However, Pu(IV) chemical recovery in the membrane remained unaffected from the solution containing 1:1000 wt. proportion of Pu(IV) to U(VI). Pu concentrations in the (U, Pu)C samples and in the irradiated fuel dissolver solutions were determined. The results thus obtained were found to be in good agreement with those obtained by conventional alpha spectrometry, biamperometry and thermal ionization mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号