首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 183 毫秒
1.
马金莲  马晨  汤佳  周顺桂  庄莉 《化学进展》2015,27(12):1833-1840
厌氧条件下微生物将电子传递给胞外电子受体的现象非常普遍,电子穿梭体(electron shuttle,ES)是介导胞外电子传递过程的重要途径之一,但其具体的机制尚未明晰。一部分微生物自身能分泌一些物质作为内生ES,另一部分微生物能利用天然存在或人工合成的某些物质作为外生ES,并将其携带的电子传递至微生物胞外电子受体。ES介导微生物胞外电子传递的基本过程为:氧化态电子穿梭体(ESox)接受电子变成还原态(ESred),ESred传递电子给胞外电子受体,自身再次氧化成ESox,从而循环往复。本文重点介绍不同种类ES及其电子穿梭机制,以及ES的分子扩散、氧化还原电势及电子转移能力对胞外电子传递过程的影响。ES介导的胞外电子传递过程直接影响污染物转化和微生物产电,因此在污染修复及生物能源等方面具有重要的应用前景。  相似文献   

2.
刘利丹  肖勇  吴义诚  陈必链  赵峰 《化学进展》2014,26(11):1859-1866
电化学活性微生物与电极之间的胞外电子传递在微生物电化学系统(microbial electrochemical systems,MESs)产能、生物修复等功能的实现中起着关键作用.目前,研究者对微生物胞外电子传递机理了解有限,限制了MESs的应用.相比于需要微生物功能蛋白与电极接触才能发生的直接电子传递,间接电子传递可通过具有可逆氧化还原活性的电子中介体(electron transfer mediators,ETMs)实现电子的传递,从而有效提高微生物胞外电子传递效率.在间接电子转移过程中,ETMs起着中间电子受体和中间电子供体的作用,即被还原后可将电子传递给最终电子受体并被重新还原;理论上每个ETMs分子可以循环数千次,因此ETMs对特定环境下终端氧化物(如铁离子)的循环有着极其显著的作用.本文系统总结了MESs中ETMs及间接电子传递机制近年来的研究进展,并且在此基础上探讨了ETMs在MESs中的研究趋势,以期推动MESs在生物修复、能源生产方面的实际应用.  相似文献   

3.
陈立香  李祎頔  田晓春  赵峰 《化学进展》2020,32(10):1557-1563
电活性菌将电子从胞内转移至胞外电子受体或者将胞外电子转移至胞内的过程为胞外电子传递,其在微生物群落间的电子传递及元素的地球化学循环过程中发挥重要作用。电活性菌的胞外电子传递研究前期主要集中于革兰氏阴性菌,由于革兰氏阳性菌与革兰氏阴性菌的膜结构/厚度明显不同,因此二者的电子跨膜传递途径差异明显。革兰氏阳性菌因分布广泛且可在高温、低pH、高pH和高盐等环境中生存,其电活性和电子传递机制也逐渐引起关注。本文归纳总结了革兰氏阳性电活性菌的电子传递类型,基于厚壁菌门、放线菌门和绿弯菌门的分类阐述胞外电子传递的研究进展,分析了革兰氏阳性电活性菌在污染物降解、生物能源和工业制品合成等方面的应用,并展望了未来的发展方向。  相似文献   

4.
邱轩  石良 《化学学报》2017,75(6):583-593
含铁矿物常见于土壤中和地表下.在那里,它们以多种形式支撑微生物的生长和代谢,如作为微生物厌氧呼吸的电子受体、微生物自养生长的电子供体和能量来源、微生物细胞之间的电子导体和电子储存介质.微生物细胞膜套的物理化学性质决定其既不具有矿物渗透性,也不具备导电性.因此,微生物需要进化出特定的机制同胞外矿物交换电子(即胞外电子传导).微生物胞外电子传导与常见的,用于有氧呼吸的微生物细胞电子传递链有着诸多本质区别.本文中,我们概述了微生物与胞外含铁矿物之间电子传导的分子机理,以及相关的微生物在生物修复污染物、生产新型纳米材料、生物采矿和生物能源中的应用.  相似文献   

5.
胞外电子传递(EET)是指氧化还原反应所产生的电子在微生物细胞内和细胞外的电子受体/电子供体之间互相转移的过程,这一过程伴随着能量和物质的转化。阐明EET机制是提高微生物能量和物质转化效率的基础,为元素的生物地球化学循环、金属防腐以及生物电化学系统的应用等提供理论支撑。电化学技术作为研究电极/溶液界面电子转移的简便、有效方法,在研究微生物的直接电子传递和间接电子传递机制中发挥了重要的作用,也促进了EET机制的研究从宏观层面到微观层面不断深入。本文综述了研究微生物EET机制所涉及的电化学联用技术(包括微电极、扫描电化学显微镜、电化学联用光学显微镜和光谱电化学等);详细介绍了这些电化学联用技术的功能和优势;重点阐述了这些电化学联用技术如何推动着EET机制的研究,从宏观的生物膜层面到微观的单个微生物细胞、蛋白和分子层面不断深入;展望了新的电化学联用技术在EET研究领域的应用前景。  相似文献   

6.
导电聚合物具有良好的导电性能,可以作为分子导线使电子在生物活性物质与电极间直接传递,是构建生物传感器的一种新型材料.聚吡咯(PPy)具有导电性、生物相容性、易固定等特点,在传感器中用于固定生物活性物质有着良好的应用前景.该文简要介绍了导电聚吡咯的合成方法及掺杂机理,重点评述了聚吡咯用于固定生物活性物质构建生物传感器的多...  相似文献   

7.
基于导电聚合物吡咯膜的生物电化学传感研究   总被引:1,自引:0,他引:1  
导电聚合物可以与纳米尺寸的生物分子形成纳米复合物,在生物催化传感器的设计中,聚吡咯(Ppy)是应用最为广泛的一种导电聚合物,这种聚合物膜具有良好的导电性、选择性、稳定性、灵敏性以及生物相容性,很容易用于纳米尺寸生物分子的固定,并展示独特的催化和亲合特性.文章主要讨论了氧化还原酶在Ppy界面上的电子传递,提出了Ppy在免疫传感器、DNA传感器以及分子印迹技术领域中的最新应用及存在的问题,并对导电聚合物在未来分子技术中的发展进行了展望.  相似文献   

8.
厌氧环境下一些微生物能够接受来自于电极的电子并将电子传递至环境污染物,这使得电驱动下生物还原技术在可持续性废水处理以及生物修复方面受到越来越多关注.此体系中,阴极电子传递被认为是影响环境污染物厌氧转化可行性和效率的制约因素.文中首先评述可能的电子传递原理,包括水解氢气介导的间接电子传递、人工合成电子穿梭体或者细菌分泌电子穿梭体介导的间接电子传递、以及电极与细菌之间的直接电子传递等途径.相比间接电子传递,直接电子传递避免了将电子传递给没有起作用的介体及没有和电极接触的浮游微生物,因而更加节能.另外,列举了自养反硝化、生物还原脱氯、重金属生物还原、CO2生物还原以及硫酸盐生物还原等应用实例.最后,提出了此领域研究发展亟需解决的两个重要问题,包括阴极生物膜的培养以及电子从电极转至微生物内在机理的解析.  相似文献   

9.
重金属污染是一个亟待解决的环境和社会问题。重金属元素在自然界常会形成各种价态的矿物,具有不同的理化性质,对重金属污染治理具有重要的参考意义。重金属离子价态的改变可通过微生物、电极电子及半导体矿物光电子传递与吸收实现。本文分析了微生物及其电化学系统、半导体矿物光电子与光电子协同作用对重金属离子的还原作用,从氧化还原电势角度分析了微生物及其电化学系统与光电子对重金属离子的还原机理。重点从微生物跨膜电子传递过程及分子网络角度阐述了微生物还原变价重金属离子的直接/间接电子传递途径、从微生物向电极的正/逆向电子传递与吸收利用角度揭示了微生物电化学系统与光电子协同微生物对重金属离子价态调控的机制。最后,提出了微生物、电极、半导体矿物与光在重金属价态调控中的作用网络与能量利用途径。可为进一步研究微生物胞外电子传递及微生物光电子利用与光电子协同微生物调控重金属离子价态及其环境治理提供参考。  相似文献   

10.
准确快速诊断水体重金属类污染物的毒性对保障饮用水安全至关重要.本研究基于大肠杆菌(E.coli)细胞膜受损的毒性响应机理,以K3 Fe(CN)6作为胞外电子受体,碳纳米管(CNTs)作为仿生纳米导线,建立了一种基于电化学传感器的水体重金属毒性检测新方法.考察了电极修饰材料、菌体浓度、电子传递体与毒性物质加入顺序、K3 ...  相似文献   

11.
生物电化学系统(BESs)的核心是生物膜在电极/溶液界面的电子传递反应,研究生物膜微区环境中的电子传递有助于阐明微生物的胞外电子传递(EET)机制,从而有针对性地提高BESs中的电子转移效率。微生物的EET机制包括直接电子传递和间接电子传递,由于生物膜组成复杂,含有多种分泌物、胞外聚合物等,常规电化学方法只能从生物膜宏观层面研究EET机制,无法有效区分这两种电子传递途径的贡献。本文采用电化学循环伏安方法研究了电子穿梭体二茂铁甲醇(FcMeOH)与希瓦氏菌(Shewanella)相互作用的界面过程;基于扫描电化学显微技术构建了穿透模式,通过微电极介导FcMeOH与Shewanella反应,收集仅来自间接电子传递途径产生的电流,同时测定了Shewanella在电极/溶液界面的氧化还原性质和空间分布。本论文将电化学扫描探针显微技术应用于EET的研究,从物理化学角度揭示微生物在代谢过程中与外界的电子传输机制。  相似文献   

12.
Carbonaceous materials can accelerate extracellular electron transfer for the biotransformation of many recalcitrant, redox-sensitive contaminants and have received considerable attention in fields related to anaerobic bioremediation. As important electron shuttles(ESs), carbonaceous materials effectively participate in redox biotransformation processes, especially microbially-driven Fe reduction or oxidation coupled with pollutions transformation and anaerobic fermentation for energy and by-pro...  相似文献   

13.
The conversion of carbon dioxide into valuable organic compounds is a highly promising approach to address the energy issues and environmental problems(e.g., global warming). Herein, we presents a facile and efficient method to prepare highly dense and well-dispersed SnO_2 nanocrystals on 1 D N-doped carbon nanowires as advanced catalysts for the efficient electroreduction of CO_2 to formate. The ultrasmall SnO_2 coated on the N-doped carbon nanowires(SnO_2@N-CNW) has been synthesized via the simple hydrothermal treatment coupled with a pyrolysis process. The unique structure enables to expose the active tin oxide and also provides the facile pathways for rapid transfer of electron and electrolyte along with the highly porous carbon foam composed with interconnected carbon nanowires. Therefore, SnO_2@NCNW electrocatalyst exhibits good durability and high selectivity for formate formation with a Faradaic efficiency of ca. 90%. This work demonstrates a simple method to rationally design high-dense tin oxide nanocrystals on the conductive carbon support as advanced catalysts for CO_2 electroreduction.  相似文献   

14.
Microbial fuel cell (MFC) is a promising approach that could utilize microorganisms to oxidize biodegradable pollutants in wastewater and generate electrical power simultaneously. Introducing advanced anode nanomaterials is generally considered as an effective way to enhance MFC performance by increasing bacterial adhesion and facilitating extracellular electron transfer (EET). This review focuses on the key advances of recent anode modification materials, as well as the current understanding of the microbial EET process occurring at the bacteria-electrode interface. Based on the difference in combination mode of the exoelectrogens and nanomaterials, anode surface modification, hybrid biofilm construction and single-bacterial surface modification strategies are elucidated exhaustively. The inherent mechanisms may help to break through the performance output bottleneck of MFCs by rational design of EET-related nanomaterials, and lead to the widespread application of microbial electrochemical systems.  相似文献   

15.
Redox protein nanoscale domains on the cell surface of a bacterium, Shewanella oneidensis MR1, grown in the absence and presence of electron acceptors, is topographically characterized using combined atomic force microscopy (AFM) and confocal surface enhanced Raman scattering (SERS) spectroscopy. The protruding nanoscale domains on the outer membrane of S. oneidensis were observed, as was their disappearance upon exposure to electron acceptors such as oxygen, nitrate, fumarate, and iron nitrilotriacetate (FeNTA). Using SERS spectroscopy, a redox heme protein was identified as a major component of the cell surface domains. This conclusion was further confirmed by the disappearance of Raman vibrational frequencies, characteristic of heme proteins, upon exposure of the cells to electron acceptors. Our experimental results from our AFM imaging and SERS spectroscopy, consistent with the literature, suggest the protruding nanoscale surface domains as heme-containing secretions. Our results on the distributions of redox proteins on microbial cell surfaces will be helpful for a mechanistic understanding of the behaviors of surface proteins and their interactions with redox environments.  相似文献   

16.
Bio-photovoltaic cells (BPVs) are a new photo-bio-electrochemical technology for harnessing solar energy using the photosynthetic activity of autotrophic organisms. Currently power outputs from BPVs are generally low and suffer from low efficiencies. However, a better understanding of the electrochemical interactions between the microbes and conductive materials will be likely to lead to increased power yields. In the current study, the fresh-water, filamentous cyanobacterium Pseudanabaena limnetica (also known as Oscillatoria limnetica) was investigated for exoelectrogenic activity. Biofilms of P. limnetica showed a significant photo response during light-dark cycling in BPVs under mediatorless conditions. A multi-channel BPV device was developed to compare quantitatively the performance of photosynthetic biofilms of this species using a variety of different anodic conductive materials: indium tin oxide-coated polyethylene terephthalate (ITO), stainless steel (SS), glass coated with a conductive polymer (PANI), and carbon paper (CP). Although biofilm growth rates were generally comparable on all materials tested, the amplitude of the photo response and achievable maximum power outputs were significantly different. ITO and SS demonstrated the largest photo responses, whereas CP showed the lowest power outputs under both light and dark conditions. Furthermore, differences in the ratios of light?:?dark power outputs indicated that the electrochemical interactions between photosynthetic microbes and the anode may differ under light and dark conditions depending on the anodic material used. Comparisons between BPV performances and material characteristics revealed that surface roughness and surface energy, particularly the ratio of non-polar to polar interactions (the CQ ratio), may be more important than available surface area in determining biocompatibility and maximum power outputs in microbial electrochemical systems. Notably, CP was readily outperformed by all other conductive materials tested, indicating that carbon may not be an optimal substrate for microbial fuel cell operation.  相似文献   

17.
Microbial electro- and photoelectrochemical CO2 reduction represents an opportunity to tackle the environmental demand for sustainable fuel production. Nanomaterials critically impact the electricity- and solar-driven microbial CO2 reduction processes. This minireview comprehensively summarizes the recent developments in the configuration and design of nanomaterials for enhancement of the bacterial adhesion and extracellular electron transfer (EET) processes, based on the modification technologies of improving chemical stability, electrochemical conductivity, biocompatibility, and surface area. Furthermore, the investigation of incorporating non-photosynthetic microorganisms using advanced light-harvesting nanostructured photoelectrodes for solar-to-chemical conversion, as well as the current understanding of EET mechanisms occurring at photosynthetic semiconductor nanomaterials-bacteria biohybrid interface is detailed. The crucial factors influencing the performance of microbial CO2 reduction systems and future perspectives are discussed to provide guidance for the realization of their large-scale application.  相似文献   

18.
To overcome shortcomings of the ex situ approaches, in situ detection using H(2)O(2) molecules to diagnose ischemia through enhanced protein direct electron transfer on a unique horseradish peroxidase-Au nanoparticles-polyaniline nanowires biofilm is demonstrated and it is discovered that the extracellular H(2)O(2) molecule released per ischemic cell is 2.7-times of that of a normal cell.  相似文献   

19.
Electrobiocorrosion, the process in which microbes extract electrons from metallic iron (Fe0) through direct Fe0-microbe electrical connections, is thought to contribute to the costly corrosion of iron-containing metals that impacts many industries. However, electrobiocorrosion mechanisms are poorly understood. We report here that electrically conductive pili (e-pili) and the conductive mineral magnetite play an important role in the electron transfer between Fe0 and Geobacter sulfurreducens, the first microbe in which electrobiocorrosion has been rigorously documented. Genetic modification to express poorly conductive pili substantially diminished corrosive pitting and rates of Fe0-to-microbe electron flux. Magnetite reduced resistance to electron transfer, increasing corrosion currents and intensifying pitting. Studies with mutants suggested that the magnetite promoted electron transfer in a manner similar to the outer-surface c-type cytochrome OmcS. These findings, and the fact that magnetite is a common product of iron corrosion, suggest a potential positive feedback loop of magnetite produced during corrosion further accelerating electrobiocorrosion. The interactions of e-pili, cytochromes, and magnetite demonstrate mechanistic complexities of electrobiocorrosion, but also provide insights into detecting and possibly mitigating this economically damaging process.  相似文献   

20.
Gold nanowires were synthesized within polycarbonate membranes according to an electroless deposition method, obtaining nanoelectrode ensembles (NEEs) with special electrochemical features. NEEs were coupled with home-produced carbon graphite screen printed electrodes and the electrochemical properties of the original nanoelectrode ensemble on screen printed substrate (NEE/SPS) assembly has been tested for sensors application. Glucose oxidase has been used as model enzyme in order to verify the feasibility of disposable gold NEE/SPS biosensors. Finally, different immobilisation and electrochemical deposition techniques based on either self assembled monolayers of cysteamine (CYS) or amino-propyl-triethoxysilane (APTES) and conductive polyaniline (PANI) molecular wires were used. Spatial patterning of the enzyme on the polycarbonate surface and of PANI wires on gold nanoelectrodes was obtained. Possible direct electron transfer between the enzyme and the PANI modified gold nanoelectrodes has been evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号