首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
Fluorescence spectra, fluorescence decay kinetics, photobleaching kinetics and photodynamic efficacy of protoporphyrin IX (PP) were investigated in endothelial cells in vitro after different incubation times. Fluorescence spectra and photobleaching kinetics were determined during total internal reflection (TIR) illumination or epiillumination. Because penetration depth of the excitation light during TIR illumination was limited to about 100 nm, plasma membrane-associated PP was almost selectively examined. Spectra obtained by TIR fluorescence spectroscopy (FS) showed a very low background, where-as spectra obtained by epi-illumination exhibited considerable background by autofluorescence and scattered light. For photobleaching kinetics during TIR illumination after 1 h or 24 h incubation, a biexponential fluorescence decrease was observed with a rapidly and a slowly bleaching portion. After 1 h incubation, the rapidly bleaching portion was the predominant fraction, whereas after 24 h incubation comparable relative amounts of the rapidly and slowly bleaching portion were determined. The rapidly and slowly bleaching portion were assigned to PP monomers and aggregated species in close vicinity to the plasma membrane. Fluorescence decay measurements after epi-illumination support the decrease of PP monomers within the whole cell with increasing incubation time. In contrast to TIR illumination, photobleaching of PP during epi-illumination was characterized by slow monoexponential fluorescence decrease after 1 h or 24 h incubation. Photodynamic efficacy of PP using epi-illumination was found to depend strongly on incubation time. Considerable cell inactivation was determined for short incubation times (1 h or 3 h), whereas photodynamic efficacy was diminished for longer incubation times. Reduced photodynamic efficacy after long incubation times was assigned to the lower amount of photodynamically active monomers determined close to the plasma membrane as well as within the whole cell. In conclusion, TIRFS measurements are suggested to be an appropriate tool for the examination of the plasma membrane-associated photosensitizer fraction in living cells.  相似文献   

2.
A system for time-gated fluorescence imaging was used to perform measurements on tumor-bearing mice treated with hematoporphyrin derivative (HpD). The aim of the study was to define the potential of this technique in the diagnosis of tumors by taking advantage of the long fluorescence lifetime of the exogenous dye with respect to the decay times of the natural fluorescence. After the administration of three different drug doses (5, 10 and 25 mg/kg body weight), fluorescence images were acquired at various uptake times (from 2 h to 10 d), to determine the best instrumental conditions and experimental procedure for the detection of tumors in the murine model considered. The optimal fluorescence contrast between the tumor area and the surrounding healthy tissue was found at 12 h after the administration of either 5 or 10 mg/kg HpD and was anticipated at 8 h for the highest drug dose. In this optimum condition, the tumor region could be identified even after the injection of 5 mg/kg HpD. A better fluorescence contrast was always obtained in 15 ns-delayed images with respect to synchronous ones.  相似文献   

3.
Haematoporphyrin derivative (HpD) photoproducts are formed in aqueous solutions during light exposure in the presence of oxygen. The evaluation of the fluorescence decay of the photoproduct-enriched HpD solution shows an increase in the short-lived components, especially about 2 ns, in comparison with HpD without photoproducts. The bleaching of the HpD fluorescence and the photoproduct formation by the fluorescence-exciting radiation has to be taken into account in the evaluation of stationary as well as time-resolved fluorescence measurements.  相似文献   

4.
A comparative study of the cellular photosensitizing properties of protoporphyrin IX (PpIX) and photoprotoporphyrin (Ppp) was carried out in the transformed murine keratinocyte cell line, PAM 212. Time-course fluorescence studies were performed to determine the rate of uptake by cells together with fluorescence microscopy. The sensitized cells were laser irradiated with a range of light doses at 635 or 670 nm to determine the phototoxicity of the two compounds and to investigate their relative fluorescence photobleaching properties. Ppp showed enhanced phototoxicity at both its optimal activation wavelength of 670 nm (eight times more phototoxic than PpIX activated at its optimal wavelength of 635 nm for the same fluence) and at 635 nm (three times more phototoxic than PpIX at the same wavelength), using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. The photobleaching rate of Ppp in cells was found to be higher using 670 nm irradiation compared with that of PpIX at 635 nm irradiation. At 635 nm, however, the photobleaching rate of Ppp was comparable to that of PpIX. The photobleaching quantum yields of the two compounds in cells were found to be similar at approximately 5 x 10(-4), with the same value confirmed at both 670 and 635 nm irradiation for Ppp. The fluorescence lifetime of Ppp in cells was measured as 5.4 ns using time-correlated single photon counting.  相似文献   

5.
The photobleaching of meta -tetra(hydroxyphenyl)chlorin m THPC) (irradiation wavelength 413 nm) in protein-containing solution was evaluated by decay in absorbance in Soret band and in fluorescence (λexc= 423 nm, λem= 655 nm). Light exposure resulted in a decrease in absorption throughout the spectrum and simultaneous appearance of new absorption bands in the spectral region 325–450 nm. The rate of m THPC photodegradation, followed by decay in absorbance, was 15-fold lower than that observed in fluorescence. This fact reflects the photobleaching of presumably monomeric, fluorescing species of m THPC. In order to determine the consequences of photobleaching of fluorescing m THPC material on cellular uptake and photocytotoxicity, human HT29 colon adenocarcinoma cells were incubated with photobleached m THPC during 5 h with or without following irradiation with the fixed fluence. Surprisingly, but up to the time when the fluorescence decreased by 50%, only a slight decrease in photocytotoxicity was detected. Either aggregated forms that have been taken up undergo intracellular monomerization (but we did not observe increase in fluorescence in living cells) or the photodynamic activity is mostly due to aggregates. The discrepancy of m -THPC-photodynamic therapy (PDT) effect and fluorescence measurements may suggest that aggregated m -THPC plays an important role in m THPC-PDT.  相似文献   

6.
In this paper, I consider theoretical models of the decay via photobleaching of a sample of surface-immobilized fluorescent molecules excited by a spatially varying laser intensity profile. I show that, with mild restrictions on the photobleaching mechanism, the fluorescence decay measured in a nonuniform excitation profile is always nonexponential. Under the same conditions, the fluorescence decay can always be approximated by a discrete sum of exponentials. A particular example is given in which a homogeneous population of fluorophores with a single (intensity-dependent) photobleaching lifetime, when illuminated by a Gaussian laser, exhibits power law fluorescence decay at long times. These results indicate that the observation of multiple exponentials in single molecule or ensemble photobleaching lifetime measurements can arise solely as an artifact of a spatially varying laser profile and is not necessarily indicative of heterogeneity in molecular internal states, conformation, or local environment.  相似文献   

7.
Abstract We report direct femtosecond measurements of the excited state dynamics of hematoporphyrin derivative (HpD) in solution. The dynamics are found to be very sensitive to the solvent and pH of aqueous solutions. The decay of the excited singlet states is much faster in acidic and pH 7 buffer aqueous solutions (<230 ps) than in basic aqueous solutions or organic solvents (> 10 ns). The dynamical results show strong correlation with static fluorescence measurements: weaker fluorescence in acidic and pH 7 buffer solutions corresponding to shorter-lived excited states. A new fast decay component with a time constant around 5 ps is identified both in acidic aqueous solutions and in organic solvents such as acetone and attributed to internal conversion from the second to the first excited singlet state of aggregates or certain oligomers in HpD, in accord with the observation that the fast decay component is larger at a higher concentration. Oxygen is found to have no effect on the dynamics on the time scale investigated, 1 ns, indicating that oxygen quenching of the singlet excited states is insignificant on this time scale. The sensitive solvent and pH dependence of the excited state dynamics has important clinical implications in the use of HpD as a photosensitizing agent.  相似文献   

8.
Experimental therapies for Barrett's esophagus, such as 5-aminolevulinic acid (ALA)-based photodynamic therapy (PDT), aim to ablate the premalignant Barrett's epithelium. However, the reproducibility of the effects should be improved to optimize treatment. Accurate irradiation with light of a proper wavelength (633 nm), fluence and fluence rate has shown to be critical for successful ALA-PDT. Here, we have used in situ light dosimetry to adjust the fluence rate measured within the esophagus for individual animals and monitored protoporphyrin IX (PpIX) fluorescence photobleaching simultaneously. Rats were administered 200 mg kg-1 ALA (n = 14) or served as control (n = 7). Animals were irradiated with an in situ measured fluence rate of 75 mW cm-2 and a fluence of 54 J cm-2. However, this more accurate method of light dosimetry did not decrease the variation in tissue response. Large differences were also observed in the dynamics of PpIX fluorescence photobleaching in animals that received the same measured illumination parameters. We found that higher PpIX fluorescence photobleaching rates corresponded with more epithelial damage, whereas lower rates corresponded with no response. A two-phased decay in PpIX fluorescence could be identified in the response group, with a rapid initial phase followed by a slower rate of photobleaching. Non-responders did not show the rapid initial decay and had a significantly lower rate of photobleaching during the second phase of the decay (P = 0.012).  相似文献   

9.
Mitochondria have been implicated as a primary subcellular site of porphyrin localization and photodestruction. However, other organelles including the cell membrane, lysosomes and nucleus have been shown to be damaged by hematoporphyrin derivative (HpD) photosensitized destruction as well. In this study we attempted to follow the translocation of the fluorescent components of HpD in human bladder tumor cells (MGH-U1) in culture to determine whether specific subcellular localization occurs over time. Following a 30 min exposure to HpD the cellular fluorescence was examined immediately and 1, 2, 4, and 24 h after HpD removal using fluorescence microscopy and an interactive laser cytometer. The in vitro translocation of dye appeared to be fairly rapid with fluorescence present at the cell membrane and later (1-2 h) within a perinuclear area of the cytoplasm. To determine whether HpD had become concentrated into a specific subcellular organelle, these fluorescence distribution patterns were compared with fluorescent marker dyes specific for mitochondria, endoplasmic reticulum and other membranous organelles. The HpD fluorescence did not appear to be as discrete as the dyes specific for mitochondria or endoplasmic reticulum but appeared similar to the diffuse cytomembrane stain. Finally, the interaction between the fluorescent components of HpD and the cellular constituents was evaluated using a "fluorescence redistribution after photobleaching" technique. The results indicated that the mean lateral diffusion for HpD in MGH-U1 cells was 1.05 x 10(-8) cm2/s, a rate closer to that of lipid diffusion (10(-8)) than that of protein diffusion (10(-10)).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The photophysical properties of 5,15-diphenyl-2,3-dihydroxychlorin (DPCOH) and 5,15-diphenyl-chlorin (DPC) in organic solution were studied. Absorption, fluorescence, triplet state and photobleaching experiments are reported. The ground states of both compounds show strong absorbance in red region (lambda = 638 nm, epsilon = 35,000 M(-1) cm(-1) and lambda = 645 nm, epsilon = 42,000 M(-1) cm(-1), respectively) and the singlet excited states show low fluorescence quantum yields of 0.0802 and 0.150 in benzene and the lifetimes are 7.38 and 10.18 ns, respectively. Absorption spectra of the triplet states were also measured and they have nearly the same triplet state lifetimes of 53 micros (DPCOH) and 50 micros (DPC). The triplet quantum yields are 0.82 and 0.75, respectively. The data of photobleaching quantum yields show that the presence of oxygen does not significantly affect the photobleaching. All the results demonstrate that both diphenylchlorines are good candidates for second-generation photosensitizer in photodynamic therapy.  相似文献   

11.
Abstract— The fluorescence lifetime and degree of fluorescence polarization of hematoporphyrin derivative (HpD) have been investigated using different solutions: organic and micellar solutions. Ham's F12 medium, and KK-47 cell suspension. The lifetime and polarization degree in organic and micellar solutions did not change with increasing incubation time, but the polarization degree in the cell suspensions temporarily increased at the initial incubation time and then decreased 4 h after incubation. The lifetime in the cell suspensions exhibited a bi-phasic exponential decay. The results obtained suggested that mainly dimeric HpD may bind weakly to the cell membrane, and then slowly be distributed throughout the cytoplasm. The polarity and viscosity of the intracellular loci containing HpD were evaluated from the fluorescence polarizations of HpD in MeOH-H2O mixtures and ethylene glycol(EG)-MeOH mixtures. The dielectric constant and viscosity of the loci containing HpD were 35 and 11 cp, respectively. Accordingly, the intracellular location of HpD were considered relatively hydrophilic loci of the cells.  相似文献   

12.
Pharmacokinetics of accumulation in organs and tissues was studied for two haematoporphyrin-based photosensitizers. These sensitizers, haematoporphyrin derivative (HpD) and an oligomeric haematoporphyrin (OHp), contained different amounts of monomeric fraction (25% and 5% respectively) and in OHp the macrocycles were bonded together with ether bonds. OHp was shown to accumulate in tumours in higher amounts than HpD. The maximal tumour to tissue concentration ratio for OHp was 6.7 observed 54 h after injection; the same ratio for HpD was 2.8 after 48 h.  相似文献   

13.
The characteristics of protoporphyrin IX (PPIX) fluorescence in superficial basal cell carcinoma (sBCC) and carcinoma in situ (Bowen's Disease, BD) following application of 5-aminolaevulinic acid (5-ALA) and its methyl ester (methyl aminolevulinate [MAL]) before, during and after photodynamic therapy (PDT) were investigated in 40 patients. Photosensitizer prodrug penetration can limit PDT efficacy and understanding the characteristics of PPIX fluorescence through fluorescence spectroscopy, may improve knowledge of photosensitizer delivery. Fluorescence intensity was assessed quantitatively, and the rate of photobleaching was determined by fitting an exponential decay. As a secondary end-point, PDT-induced pain was also measured continuously during treatment using a novel hand-held device, known as a pain logger. In vivo PPIX fluorescence was shown to decrease during irradiation, allowing the in vivo photobleaching of PPIX to be monitored. No significant difference was found between ALA- or MAL-induced PPIX fluorescence in lesions of sBCC and BD (P>0.05), indicating no detectable difference in PPIX kinetics for the two prodrugs as assessed by these measures. Pain, as assessed by the logger device, showed high interindividual variability and pain levels tended to be higher initially, decreasing during treatment. No difference was seen in pain experienced during ALA-or MAL-PDT (P>0.05).  相似文献   

14.
Amphiphilic sensitizers self-associate in aqueous environments and form aggregated species that exhibit no or only negligible photodynamic activity. However, amphiphilic photosensitizers number among the most potent agents of photodynamic therapy. The processes by which these sensitizers are internalized into tumor cells have yet to be fully elucidated and thus remain the subject of debate. In this study the uptake of photosensitizer aggregates into tumor cells was examined directly using subcellular time-resolved fluorescence spectroscopy with a high temporal resolution (20-30 ps) and high sensitivity (time-correlated single-photon counting). The investigations were performed on selected sensitizers that exhibit short fluorescence decay times (< 50 ps) in aggregated form. Derivatives of pyropheophorbide-a ether and chlorin e6 with varying lipophilicity were used for the study. The characteristic fluorescence decay times and spectroscopic features of the sensitizer aggregates measured in aqueous solution also could be observed in A431 human endothelial carcinoma cells administered with these photosensitizers. This shows that tumor cells can internalize sensitizers in aggregated form. Uptake of aggregates and their monomerization inside cells were demonstrated directly for the first time by means of fluorescence lifetime imaging with a high temporal resolution. Internalization of the aggregates seems to be endocytosis mediated. The degree of their monomerization in tumor cells is strongly influenced by the lipophilicity of the compounds.  相似文献   

15.
Measurements of time-resolved photobleaching and nanosecond fluorescence decay from microscopic samples of methanogenic bacteria are reported. From cultures of Methanobacterium thermoautotrophicum and Methanosarcina barkeri, decay times of 1 ns and 3 ns were obtained for the specific coenzymes F420 and 7-methylpterin, respectively. In contrast to methylpterin, the fluorescence of F420 was bleached selectively, with a time constant of about 160 s, at an irradiation power density of 5 mW mm?2. Similar time constants were found for samples of sewage sludge containing methanogenic bacteria. Active and inactive bacterial cells could be differentiated by following the course of photobleaching.  相似文献   

16.
Abstract— Two new sensitizers are introduced for a potential use in photodynamic therapy: Zn2+- and MG2+-tetrabenzoporphyrin (ZnTBP and MgTBP). A comparative study of the quantum yields of singlet oxygen generation (ΦΔ) of hematoporphyrin derivative (HpD), Photofrin II (PF-II), Zn2+-phthalocyanine tetrahydroxyl [ZnPC(OH)4] and the newly introduced sensitizers ZnTBP and MgTBP in liposomes, as well as the kinetics of a photochemical reaction sensitized by them, was made by employing the fluorescent membrane probe 9,10-dimethylanthracene (DMA). We followed the photosensitization of DMA in real time by monitoring its fluorescence decrease at 457 nm and found that DMA's photosensitization is oxygen mediated. The kinetic traces of the photosensitization reactions were fitted to an analytical function, and the ΦΔ values were evaluated. At 10 μ M sensitizer in an aqueous suspension of 2 mg/mL egg phosphatidylcholine (EPC), HpD was found to have the largest value of ΦΔ (0.215), followed by PF-II (0.191), ZnTBP (0.023), MgTBP (0.019) and ZnPC(OH)4 (0.005). As a test of the method, ΦΔ for methylene blue in ethanol was measured and found to be 0.45 as compared to 0.52 reported in the literature. Due to difference in the sensitizers' absorbances at the laser's wavelength, the reaction photosensitized by ZnTBP was the fastest with a time constant of 6.7 min, followed by MgTBP (8.7), PF-II (11.9), HpD (17.1) and ZnPC(OH)4 (31.2), all at equal sensitizers' concentrations and laser intensities. The binding constants of the sensitizers to EPC liposomes are also reported.  相似文献   

17.
Wilken  R.  Holländer  A.  Behnisch  J. 《Plasmas and Polymers》2002,7(1):19-39
Using infrared reflection absorption spectroscopy (IRRAS), quartz crystal microbalance (QMB) measurements, and X-ray photoelectron spectroscopy (XPS) in combination with chemical derivatization techniques the VUV photolysis of polyethylene (PE), polypropylene (PP), and polystyrene (PS) was investigated. A mass balance obtained from the quantification of the data was used to suggest reaction path ways. Although PE and PP behave similar, the mass loss is about 8 times higher in the case of PP. These differences originate from the higher disproportionation to recombination ratio for the branched polymer. Both polymers form double bonds and at extended treatment times they tend to crosslink. PS is rather stable due to the possibility of the energy dissipation by fluorescence.  相似文献   

18.
Wilken  R.  Holländer  A.  Behnisch  J. 《Plasmas and Polymers》2002,7(2):185-205
Using infrared reflection absorption spectroscopy (IRRAS), quartz crystal microbalance (QMB) measurements, and X-ray photoelectron spectroscopy (XPS) in combination with chemical derivatization techniques the VUV photolysis of polyethylene (PE), polypropylene (PP), and polystyrene (PS) was investigated. A mass balance obtained from the quantification of the data was used to suggest reaction path ways. Although PE and PP behave similar, the mass loss is about 8 times higher in the case of PP. These differences originate from the higher disproportionation to recombination ratio for the branched polymer. Both polymers form double bonds and at extended treatment times they tend to crosslink. PS is rather stable due to the possibility of the energy dissipation by fluorescence.  相似文献   

19.
N2-laser flash photolysis measurements of poly (N-vinylcarbazole) (PVCz) and N-isopropylcarbazole (NIPC) with p-dicyanobenzene (DCNB)_in dimethylformide (DMF) show an excitation intensity dependent quantum yield for for ion-radical production. The transient absorbance associated with the ion radical species together with light intensity dependent fluorescence decay curves demonstrate that excitation annihilation processes can compete effectively with ion-radical formation at high excitation intensities in this polymer.  相似文献   

20.
The presence of phased protoporphyrin IX (PpIX) bleach kinetics has been shown to correlate with esophageal response to 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT) in animal models. Here we confirm the existence of phased PpIX photobleaching by increasing the temporal resolution of the fluorescence measurements using the therapeutic illumination and long wavelength fluorescence detection. Furthermore fluorescence differential pathlength spectroscopy (FDPS) was incorporated to provide information on the effects of PpIX and tissue oxygenation distribution on the PpIX bleach kinetics during illumination. ALA at a dose of 200 mg kg(-1) was orally administered to 15 rats, five rats served as control animals. PDT was performed at an in situ measured fluence rate of 75 mW cm(-2) using a total fluence of 54 J cm(-2). Forty-eight hours after PDT the esophagus was excised and histologically examined for PDT-induced damage. Fluence rate and PpIX photobleaching at 705 nm were monitored during therapeutic illumination with the same isotropic probe. A new method, FDPS, was used for superficial measurement on saturation, blood volume, scattering characteristics and PpIX fluorescence. Results showed two-phased PpIX photobleaching that was not related to a (systematic) change in esophageal oxygenation but was associated with an increase in average blood volume. PpIX fluorescence photobleaching measured using FDPS, in which fluorescence signals are only acquired from the superficial layers of the esophagus, showed lower rates of photobleaching and no distinct phases. No clear correlation between two-phased photobleaching and histologic tissue response was found. This study demonstrates the feasibility of measuring fluence rate, PpIX fluorescence and FDPS during PDT in the esophagus. We conclude that the spatial distribution of PpIX significantly influences the kinetics of photobleaching and that there is a complex interrelationship between the distribution of PpIX and the supply of oxygen to the illuminated tissue volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号