首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Interaction of copper(II) chloride with 2, 4, 6‐triallyloxy‐1, 3, 5‐triazine leads to formation of copper(II) complex [CuCl2·2C3N3(OC3H5)3] ( I ). Electrochemical reduction of I produces the mixed‐valence CuI, II π, σ‐complex of [Cu7Cl8·2C3N3(OC3H5)3] ( II ). Final reduction produces [Cu8Cl8·2C3N3(OC3H5)3]·2C2H5OH copper(I) π‐complex ( III ). Low‐temperature X‐ray structure investigation of all three compounds has been performed: I : space group P1¯, a = 8.9565(6), b = 9.0114(6), c = 9.7291(7) Å, α = 64.873(7), β = 80.661(6), γ = 89.131(6)°, V = 700.2(2) Å3, Z = 1, R = 0.0302 for 2893 reflections. II : space group P1¯, a = 11.698(2), b = 11.162(1), c = 8.106(1) Å, α = 93.635(9), β = 84.24(1), γ = 89.395(8)°, V = 962.0(5) Å3, Z = 1, R = 0.0465 for 6111 reflections. III : space group P1¯, a = 8.7853(9), b = 10.3602(9), c = 12.851(1) Å, α = 99.351(8), β = 105.516(9), γ = 89.395(8), V = 1111.4(4) Å3, Z = 1, R = 0.0454 for 4470 reflections. Structure of I contains isolated [CuCl2·2C3N3(OC3H5)3] units. The isolated fragment of I fulfils in the structure of II bridging function connecting two hexagonal prismatic‐like cores Cu6Cl6, whereas isolated Cu6Cl6(CuCl)2 prismatic derivative appears in III . Coordination behaviour of the 2, 4, 6‐triallyloxy‐1, 3, 5‐triazine moiety is different in all the compounds. In I ligand moiety binds to the only copper(II) atom through the nitrogen atom of the triazine ring. In II ligand is coordinated to the CuII‐atom through the N atom and to two CuI ones through the two allylic groups. In III all allylic groups and nitrogen atom are coordinated by four metal centers. The presence of three allyl arms promotes an acting in II and III structures the bridging function of the ligand moiety. On the other hand, space separation of allyl groups enables a formation of large complicated inorganic clusters.  相似文献   

2.
By alternating‐current electrochemical synthesis crystals of {Cu[H2NC5H4N(C3H5)]Br2} ˙ H2O ( I ), {Cu[H2NC5H4N(C3H5)]Br0.65Cl1.35} ˙ H2O ( II ) and {Cu[H2NC5H4N(C3H5)]Cl2} ( III ) π‐complexes have been obtained and structurally investigated. The I and II compounds are isostructural and crystallize in a monoclinic sp. gr. P21/c, I : a = 7.359(2)Å, b = 12.3880(6)Å, c = 13.637(3)Å, β = 107.03(1)°, V = 1188.7(4)Å3, Z = 4 for C8H13N2OBr2Cu composition, R = 0.0293 for 2140 reflections. II : a = 7.2771(6)Å, b = 12.3338(3)Å, c = 13.4366(7)Å, β = 107.632(2)°, V = 1149.3(1)Å3, Z = 4 for C8H13N2Br0.65Cl1.35Cu composition, R = 0.0463 for 2185 reflections. Metal and halogen atoms form centrosymmetric Cu2X4 dimers. Each copper atom is surrounded by three halogen atoms and by a weakly bonded C=C‐group of the onium moiety. Isolated {Cu[H2NC5H4N(C3H5)]}2X4 dimers are combined into a three‐dimensional network due to a bridging function of water molecules via a system of rather strong hydrogen bonds. Chlorine derivative III crystallizes in another structure type: sp. gr. C2/c, a = 21.568(7)Å, b = 7.260(2)Å, c = 13.331(3)Å, β = 95.65(2)°, V = 2077(2)Å3, Z = 8 for C8H11N2Cl2Cu composition. Copper atom, included in CuCl2 isolated fragment, is coordinated to a C=C‐bond of ligand moiety. N‐H…Cl hydrogen bonds unite Cu[H2NC5H4N(C3H5)]Cl2 subunits into infinite ribbons. π‐Interaction in III appears to be more effective than in I and II .  相似文献   

3.
Crystals of the formula (An)3[Cu4Cl7] (I) and (An)3[Cu8Cl10(C? CCH2OH)]· 2H2O (II) were obtained in the system AnCl-CuCl-H2O-HC? CCH2OH [An is the anilinium cation (C6H5NH 3 + )] and studied by X-ray diffraction analysis (DARCH diffractometer, λMoKα, θ/2θ scan mode; 1121 and 2433 unique reflections with F≥4Σ(F), R = 0.064 and 0.044 for I and II, respectively). Ciystals I are orthorhombic, space group Pbnm, Z = 4. a = 21.65(1), b = 11.006(5). c = 11.068(6) Å; ciystals II are triclinic, space group P-l, Z = 2, a = 14.94(1), b = 12.242(8). c = 11.341(7) Å, α = 106.77(5), β = 92.05(6), γ = 113.38(5)°. In contrast to I, the anionic copper acetylenide π-complex contains the propargylium ion whose terminal C? C group acts as a double bridging π, Σ-ligand sim ultaneously bonded to four copper(I) atoms. Structural genesis of [Cu4Cl7]3? n] (I) and [Cu8C110(C = CCH2OH)]3? n (II) anions is considered.  相似文献   

4.
The two title dinuclear copper(II) complexes, [Cu2Cl4(C17H20Cl2N2)2], (I), and [Cu2Cl4(C19H22N2O4)2], (II), have similar coordination environments. In each complex, the asymmetric unit consists of one half‐molecule and the two copper centres are bridged by a pair of Cl atoms, resulting in complexes with centrosymmetric structures containing Cu(μ‐Cl)2Cu parallelogram cores; the Cu...Cu separations and Cu—Cl—Cu angles are 3.4285 (8) Å and 83.36 (3)°, respectively, for (I), and 3.565 (2) Å and 84.39 (7)° for (II). Each Cu atom is five‐coordinated and the coordination geometry around the Cu atom is best described as a distorted square‐pyramid with a τ value of 0.155 (3) for (I) and 0.092 (7) for (II). The apical Cu—Cl bond length is 2.852 (1) Å for (I) and 2.971 (2) Å for (II). The basal Cu—Cl and Cu—N average bonds lengths are 2.2673 (9) and 2.030 (2) Å, respectively, for (I), and 2.280 (2) and 2.038 (6) Å for (II). The molecules of (I) are linked by one C—H...Cl hydrogen bond into a complex [10] sheet. The molecules of (II) are linked by one C—H...Cl and one N—H...O hydrogen bond into a complex [100] sheet.  相似文献   

5.
In the crystals of the five title compounds, tetrakis‐(μ‐3,3‐dimethylbutyrato‐O:O′)bis(ethanol‐O)dicopper(II)–ethanol (1/2), [Cu2(C6H11O2)4(C2H6O)2]·2C2H6O, (I), tetrakis(μ‐3,3‐dimethylbutyrato‐O:O′)bis(2‐methylpyridine‐N)di­copper(II), [Cu2(C6H11O2)4(C6H7N)2], (II), tetrakis‐(μ‐3,3‐dimethylbutyrato‐O:O′)bis(3‐methylpyridine‐N)di‐copper(II), [Cu2(C6H11O2)4(C6H7N)2], (III), tetrakis‐(μ‐3,3‐dimethylbutyrato‐O:O′)bis(4‐methylpyridine‐N)di‐copper(II), [Cu2(C6H11O2)4(C6H7N)2], (IV), and tetrakis‐(μ‐3,3‐dimethylbutyrato‐O:O′)bis(3,3‐dimethylbutyric acid‐O)dicopper(II), [Cu2(C6H11O2)4(C6H12O2)2], (V), the di­nuclear CuII complexes all have centrosymmetric cage structures and (IV) has two independent molecules. The Cu?Cu separations are: (I) 2.602 (3) Å, (II) 2.666 (3) Å, (III) 2.640 (2) Å, (IV) 2.638 (4) Å and (V) 2.599 (1) Å.  相似文献   

6.
The blue copper complex compounds [Cu(phen)2(C6H8O4)] · 4.5 H2O ( 1 ) and [(Cu2(phen)2Cl2)(C6H8O4)] · 4 H2O ( 2 ) were synthesized from CuCl2, 1,10‐phenanthroline (phen) and adipic acid in CH3OH/H2O solutions. [Cu(phen)2‐ (C6H8O4)] complexes and hydrogen bonded H2O molecules form the crystal structure of ( 1 ) (P1 (no. 2), a = 10.086(2) Å, b = 11.470(2) Å, c = 16.523(3) Å, α = 99.80(1)°, β = 115.13(1)°, γ = 115.13(1)°, V = 1617.5(5) Å3, Z = 2). The Cu atoms are square‐pyramidally coordinated by four N atoms of the phen ligands and one O atom of the adipate anion (d(Cu–O) = 1.989 Å, d(Cu–N) = 2.032–2.040 Å, axial d(Cu–N) = 2.235 Å). π‐π stacking interactions between phen ligands are responsible for the formation of supramolecular assemblies of [Cu(phen)2(C6H8O4)] complex molecules into 1 D chains along [111]. The crystal structure of ( 2 ) shows polymeric [(Cu2(phen)2Cl2)(C6H8O4)2/2] chains (P1 (no. 2), a = 7.013(1) Å, b = 10.376(1) Å, c = 11.372(3) Å, α = 73.64(1)°, β = 78.15(2)°, γ = 81.44(1)°, V = 773.5(2) Å3, Z = 1). The Cu atoms are fivefold coordinated by two Cl atoms, two N atoms of phen ligands and one O atom of the adipate anion, forming [CuCl2N2O] square pyramids with an axial Cl atom (d(Cu–O) = 1.958 Å, d(Cu–N) = 2.017–2.033 Å, d(Cu–Cl) = 2.281 Å; axial d(Cu–Cl) = 2.724 Å). Two square pyramids are condensed via the common Cl–Cl edge to centrosymmetric [Cu2Cl2N4O2] dimers, which are connected via the adipate anions to form the [(Cu2(phen)2Cl2)(C6H8O4)2/2] chains. The supramolecular 3 D network results from π‐π stacking interactions between the chains. H2O molecules are located in tunnels.  相似文献   

7.
The crystals of copper(I) π-complexes with N-allyl piperazine derivatives, [C3H5NH(CH2)4NH2]Cu2Cl4(I) and [C3H5NH(CH2)4NHC3H5]0.5CuCl2(II), were prepared by alternating-current electrochemical synthesis. X-ray diffraction study showed that compounds Iand IIcrystallize in the monoclinic system: for I, space group P21/a, a= 10.254(4) Å, b= 12.306(4) Å, c= 10.656(4) Å, γ = 98.83(3)°, V= 1329(2) Å3, Z= 4, R= 0.0457 for 1334 independent reflections; for II, space group P21/n, a= 10.187(2) Å, b= 7.283(2) Å, c= 10.480(3) Å, γ = 100.72(2)°, V= 764.0(6) Å3, Z= 4, R= 0.0371 for 1025 independent reflections. The structure of Iis composed of {Cu2Cl4(C7H16N2)}2dimers linked by fairly strong (N)H···Cl hydrogen bonds (2.35(4) Å). The structure of IIconsists of centrosymmetrical dimeric Cu2Cl4 2–anions, whose copper atoms coordinate the allyl groups of different centrosymmetrical organic cations. The dimer–ligand chains are stretched along the [ $ {11} $ 0] direction and are joined by hydrogen contacts (N)H···Cl (2.62(4) Å).  相似文献   

8.
Molybdenum(II) Halide Clusters with two Alcoholate Ligands: Syntheses and Crystal Structures of (C18H36N2O6Na)2[Mo6Cl12(OCH3)2] and (C18H36N2O6Na)2[Mo6Cl12(OC15H11)2] · 2C4H6O3 . Reaction of Mo6Cl12 with two equivalents of sodium methoxide in the presence of 2,2,2-crypt yields (C18H36N2O6Na)2[Mo6Cl12(OCH3)2] ( 1 ), which can be converted to (C18H36N2O6Na)2[Mo6Cl12(OC15H11)2] · 2C4H6O3 ( 2 ) by metathesis with 9-Anthracenemethanole in propylene carbonate. As confirmed by X-ray single crystal structure determination ( 1 : C2/m, a=25.513(8) Å, b=13.001(3) Å, c=10.128(3) Å, β=100.204(12)°; : C2/c, a=15.580(5) Å, b=22.337(5) Å, c=27.143(8) Å, β=98.756(10)°) the compounds contain anionic cluster units [Mo6ClCl(ORa)2]2? with two alcoholate ligands in terminal trans positions ( 1 : d(Mo—Mo) 2.597(2) Å to 2.610(2) Å, d(Mo—Cli) 2.471(3) Å to 2.493(4) Å, d(Mo—Cla) 2.417(8) Å and 2.427(8) Å, d(Mo—O) 2.006(13) Å; 2 : d(Mo—Mo) 2.599(3) Å to 2.628(3), d(Mo—Cli) 2.468(8) Å to 2.506(7) Å, d(Mo—Cla) 2.444(8) Å and 2.445(7) Å, d(Mo—O) 2.012(19) Å).  相似文献   

9.
Molybdenum(II) Halide Clusters with six Alcoholate Ligands: (C18H36N2O6Na)2[Mo6Cl8(OCH3)6] · 6CH3OH and (C18H36N2O6Na)2[Mo6Cl8(OC6H5)6] . The reaction of Na2[Mo6Cl8(OCH3)6] and 2,2,2-crypt yields (C18H36N2O6Na)2[Mo6Cl8(OCH3)6] · 6 CH3OH ( 1 ), which is converted to (C18H36N2O6Na)2[Mo6Cl8(OC6H5)6] ( 2 ) by metathesis with phenol. According to single crystal structure determinations ( 1 : P3 1c, a=14.613(3) Å, c=21.036(8) Å; 2 : P3 1c, a=15.624(1) Å, c=19.671(2) Å) the compounds contain anionic clusters [Mo6Cl8i(ORa)6]2? ( 1 : d(Mo—Mo) 2.608(1) Å to 2.611(1) Å, d(Mo—Cl) 2.489(1) Å to 2.503(1) Å, d(Mo—O) 2.046(4) Å; 2 : d(Mo—Mo) 2.602(3) Å to 2.608(3) Å, d(Mo—Cl) 2.471(5) Å to 2.4992(5) Å, d(Mo—O) 2.091(14) Å). Electronic interactions of the halide cluster and the phenolate ligands in [Mo6Cl8(OC6H5)6]2? is investigated by means of UV/VIS spectroscopy and EHMO calculations.  相似文献   

10.
By means of alternating current electrochemical synthesis crystals of [C13H15N2]+2[CuCl2.58Br1.42] ( I ) and [C13H15N2]+[Cu2Cl0.67Br2.33] ( II ) have been obtained and structurally characterized. Compound I crystallizes in the orthorhombic system, space group Fddd, a = 7.828(1) Å, b = 26.402(2) Å, c = 28.595(3) Å, Dc = 1.4995(5) g/cm3, Z = 8, R = 0.067 for 2157 reflections. The CuX42– tetrahedra are connected with the organic cations through an electrostatic interaction. Crystals of II are monoclinic, space group P21/c, a = 9.2293(8) Å, b = 22.1332(9) Å, c = 9.2939(9) Å, β = 118.021(4)°, Dc = 2.1251(5) g/cm3, Z = 4, R = 0.042 for 2858 reflections. A tetrahedral environment of the Cu1 atom involves four halide atoms, whereas Cu2 possesses a trigonal‐pyramidal coordination with the C=C‐bond and three halide atoms.  相似文献   

11.
In the crystals of bis(pyridine‐N)tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C5H5N)2], (I), the dinuclear CuII complexes have cage structures with Cu?Cu distances of 2.632 (1) and 2.635 (1) Å. In the crystals of bis(2‐­methylpyridine‐N)tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C6H7N)2], (II), bis­(3‐methylpyridine‐N)tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C6H7N)2], (III), and bis(quinoline‐N)­tetrakis(μ‐­trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C9H7N)2], (IV), the centrosymmetric dinuclear CuII complexes have a cage structure with Cu?Cu distances of 2.664 (1), 2.638 (3) and 2.665 (1) Å, respectively. In the crystals of catena‐poly­[tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II)], [Cu2(C5H11O2Si)4]n, (V), the dinuclear CuII units of a cage structure are linked by the cyclic Cu—O bonds at the apical positions to form a linear chain by use of a glide translation.  相似文献   

12.
The reaction of 2‐amino‐benzothiazole with allyl bromide resulted in a mixture of 2‐imino‐3‐allyl‐benzothiazole and 2‐imino‐3‐allyl‐benzothiazolium bromide.Using such a mixture and copper(II) chloride in acetonitrile solution in alternating‐current electrochemical synthesis crystals of the [(CuCl)C10H10SN2] ( I ) have been obtained. The same procedure, performed in ethanol solution, has led to formation of [C10H11SN2+]2[Cu2Cl4]2? ( II ). In the same manner the bromine derivative [C10H11SN2+]2[Cu2Br4]2? ( III ) has been synthesized. All three compounds were X‐ray structurally investigated. I :monoclinic space group P21/n, a = 13.789(6), b = 6.297(3), c = 13.830(6) Å, β = 112.975(4)°, V = 1105.6 (9) Å3, Z = 4 for CuCl·C10H10 SN2 composition. Compounds II and III are isomorphous and crystallize in triclinic space group. II a = 7.377(3), b = 8.506(3), c = 9.998(4) Å, α = 79.892(10)°, β = 82.704(13)°, γ = 78.206(12)°, V = 601.9(4) Å3, Z = 1. III a = 7.329(2), b = 8.766(3), c = 10.265(3) Å, α = 79.253(9)°, β = 82.625(9)°, γ = 77.963(9)°, V = 630.9(3) Å3, Z = 1. In the structure I [(CuCl)C10H10SN2] building blocks are bound into infinitive spiral‐like chains via strong N‐H..Cl hydrogen bonds. In the zwitter‐ionic II and III compounds copper and halide atoms form centrosymmetric [Cu2X4]2? anions, which are interconnected via N‐H..X hydrogen bonds into infinite butterfly‐like chains. The strongest Cu‐(C=C) π‐interaction has been observed in structure I , where copper possesses coordination number 3. Increasing copper coordination number to 4 in II as well as replacing chlorine atoms by bromine ones in III suppresses markedly this interaction.  相似文献   

13.
By alternating‐current electrochemical technique crystals of copper(I) π‐complex with 1‐allylpyridinium chloride of [C5H5N(C3H5)][Cu2Cl3] ( 1 ) composition have been obtained and structurally investigated. Compound 1 crystallizes in monoclinic system, space group C2/c a = 24.035(1) Å, b = 11.4870(9) Å, c = 7.8170(5) Å, β = 95.010(5)°, V = 2150.0(2) Å3 (at 100 K), Z = 8, R = 0.028, for 4836 independent reflections. In the structure 1 trigonal‐pyramidal environment of π‐coordinated copper(I) atom is formed by a lengthened to 1.376(2) Å C=C bond of allyl group and by three chlorine atoms. Other two copper atoms are tetrahedrally surrounded by chlorine atoms only. The coordination polyhedra are combined into an original infinite (Cu4Cl62—)n fragment. Structural comparison of 1 and the recently studied copper(I) chloride π‐complexes with 3‐amino‐, 2‐amino‐, 4‐amino‐1‐allylpyridinium chlorides of respective [LCu2Cl3] ( 2 ), [L2Cu2Cl4] ( 3 ), and [LCuCl2] ( 4 ) compositions allowed us to reveal the trend of the inorganic fragment complication which depends on pKa (base) value of the corresponding initial heterocycle.  相似文献   

14.
In poly[di‐μ‐chlorido‐μ‐(4,4′‐bipyridazine)‐κ2N1:N1′‐cadmium(II)], [CdCl2(C8H6N4)]n, (I), and its isomorphous bromide analogue, [CdBr2(C8H6N4)]n, (II), the halide atom lies on a mirror plane and the CdII ion resides at the intersection of two perpendicular mirror planes with m2m site symmetry. The pyridazine rings of the ligand lie in a mirror plane and are related to each other by a second mirror plane perpendicular to the first. The compounds adopt the characteristic structure of the [MIIX2(bipy)] type (bipy is bipyridine) based on crosslinking of [Cd(μ‐X)2]n chains [Cd—Cl = 2.5955 (9) and 2.6688 (9) Å; Cd—Br = 2.7089 (4) and 2.8041 (3) Å] by bitopic rod‐like organic ligands [Cd—N = 2.368 (3)–2.380 (3) Å]. This feature is discussed in terms of supramolecular stabilization, implying that the periodicity of the inorganic chain [Cd...Cd = 3.7802 (4) Å in (I) and 3.9432 (3) Å in (II)] is favourable for extensive parallel π–π stacking of monodentate pyridazine rings, with centroid–centroid distances of 3.7751 (4) Å in (I) and 3.9359 (4) Å in (II). This is not the case for the longer iodide bridges, which cannot stabilize such a pattern. In poly[tetra‐μ‐iodido‐μ4‐(4,4′‐bipyridazine)‐κ4N1:N2:N1′:N2′‐dicadmium(II)], [Cd2I4(C8H6N4)]n, (III), the ligands are situated across a centre of inversion; they are tetradentate [Cd—N = 2.488 (2) and 2.516 (2) Å] and link successive [Cd(μ‐I)2]n chains [Cd—I = 2.8816 (3)–3.0069 (4) Å] into corrugated layers.  相似文献   

15.
The CuII complex bis[hydroxybis(pyridin‐2‐yl)methanesulfonato‐κ3N,O,N′]copper(II) hexahydrate, [Cu(C11H9N2O4S)2]·6H2O, (I), crystallizes in the space group P, compared with P21/c for the anhydrous CoII analogue bis[hydroxybis(pyridin‐2‐yl)methanesulfonato‐κ3N,O,N′]cobalt(II), [Co(C11H9N2O4S)2], (II). However, both molecules sit on a crystallographic inversion centre and are thus very similar in appearance. Jahn–Teller elongation of the Cu—O bonds [2.347 (3) Å in (I) and 2.064 (2) Å in (II)] influences the S—O bond lengths, which are all around 1.455 (3) Å in (I) and 1.436 (2)–1.473 (2) Å in (II).  相似文献   

16.
The two novel thioantimonate(V) compounds [Mn(C6H18N4)(C6H19N4)]SbS4 ( I ) and [Mn(C6H14N2)3][Mn(C6H14N2)2(SbS4)2]·6H2O ( II ) were synthesized under solvothermal conditions by reacting elemental Mn, Sb and S in the stoichiometric ratio in 5 ml tris(2‐aminoethyl)amine (tren) at 140 °C or chxn (trans‐1, 2‐diaminocyclohexane, aqueous solution 50 %) at 130 °C. Compound I crystallises in the triclinic space group P1¯, a = 9.578(2), b = 11.541(2), c = 12.297(2)Å, α = 62.55(1), β = 85.75(1), γ = 89.44(1)°, V = 1202.6(4)Å3, Z = 2, and II in the monoclinic space group C2/c, a = 32.611(2), b = 13.680(1), c = 19.997(1)Å, β = 117.237(5)°, V = 7931.7(8)Å3, Z = 4. In I the Mn2+ cation is surrounded by one tetradentate tren molecule, one protonated tren acting as a monodentate ligand and a monodentate [SbS4]3— anion yielding a distorted octahedral environment. In II one unique Mn2+ ion is in an octahedral environment of three bidentate chxn molecules and the second independent Mn2+ ion is coordinated by two chxn ligands and two monodentate [SbS4]3— units leading to a distorted octahedral surrounding. The compounds were investigated and characterized with thermal and spectroscopic methods.  相似文献   

17.
The isotypic compounds tris(1,2‐ethanedi­amine‐N,N′)­zinc(II) triiodide iodide, [Zn(C2H8N2)3](I3)I, and tris(1,2‐ethanedi­amine‐N,N′)­nickel(II) triiodide iodide, [Ni(C2H8N2)3](I3)I, contain the octahedral [M(en)3]2+ cation, with M = Zn and Ni, in both enantiomeric forms, an essentially linear triiodide anion and an iodide anion. The geometries of the complex ions are as expected, e.g.d(Ni—N) = 2.123 (5), 2.127 (6) and 2.134 (5) Å, and d(Zn—N) = 2.176 (4), 2.193 (4) and 2.210 (4) Å. The shortest contact between the triiodide and iodide ions is 3.979 (1) Å for the nickel compound and 4.013 (1) Å for the zinc compound.  相似文献   

18.
The crystal structures of tris(2‐methyl­quinolin‐8‐olato‐N,O)­iron(III), [Fe­(C10­H8­NO)3], (I), and aqua­bis(2‐methyl­quinolin‐8‐olato‐N,O)­copper(II), [Cu­(C10­H8NO)2­(H2O)], (II), have been determined. Compound (I) has a distorted octahedral configuration, in which the central Fe atom is coordinated by three N atoms and three O atoms from three 2‐methylquinolin‐8‐olate ligands. The three Fe—O bond distances are in the range 1.934 (2)–1.947 (2) Å, while the three Fe—N bond distances range from 2.204 (2) to 2.405 (2) Å. In compound (II), the central CuII atom and H2O group lie on the crystallographic twofold axis and the coordination geometry of the CuII atom is close to trigonal bipyramidal, with the three O atoms in the basal plane and the two N atoms in apical positions. The Cu—N bond length is 2.018 (5) Å. The Cu—O bond length in the basal positions is 1.991 (4) Å, while the Cu—O bond length in the apical position is 2.273 (6) Å. There is an intermolecular OW—H?O hydrogen bond which links the mol­ecules into a linear chain along the b axis.  相似文献   

19.
In two linkage isomers, bis[1,3‐di­methyl‐2,4,6(1H,3H,5H)‐pyrimidine­trionato]‐C5,O4‐(ethyl­enedi­amine‐N,N′)platinum(II), [Pt(C6H7N2O3)2(C2H8N2)], (I), and bis[1,3‐di­methyl‐2,4,6(1H,3H,5H)‐py­rim­idine­tri­on­ato‐C5](ethyl­enediamine‐N,N′)­plati­num(II) di­hyd­rate, [Pt(C6H7N2O3)2(C2H8N2)]·2H2O, (II), crystal­lized from the same aqueous solution containing [Pt(en)(OH)2] and 1,3‐di­methyl­barbituric acid (Hdmbarb) in a 1:2 molar ratio, a pair of monodentate dmbarb? anions coordinate to the Pt atom at tetrahedral C atoms for (II), while one dmbarb? anion coordinates at the carbon and the other at a deprotonated enol oxy­gen for (I). The Pt—C distances in (I) and (II) are comparable: 2.112 (4) Å for (I), and 2.114 (4) and 2.117 (4) Å for (II).  相似文献   

20.
Single crystals of [(C5H4NH)NC4H8NH(C3H5)]2+[Cu3Cl5]2? are obtained by ac synthesis in ethanol from 1-(2-pyridyl)-4-allyl-piperazinium and Cu(II) dichlorides and their structure is studied by X-ray diffraction analysis (space group P-1, a = 7.246(7) Å, b = 8.54(1) Å, c = 16.41(1) Å, α = 70.76(8)°, β = 77.24(8)°, λ = 80.42(9)°, V = 30(4) Å3, Z = 2, R(F) = 0.0686. In the structure of this π-complex, the Cu and Cl atoms form unusual centrosymmetrical Cu6Cl10 fragments, each fragment being bonded to two 1-(2-pyridyl)-4-allyl-piper-azinium cations via π-interaction Cu-(C=C). A three-dimensional structure is formed by means of N-H…Cl hydrogen bonds. The trigonal-pyramidal surrounding of the Cu(1) atom includes three Cl atoms and the C=C bond, while the tetrahedral surrounding of Cu(2) and the trigonal surrounding of Cu(3) involve the Cl atoms only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号