首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We derive a set of inequalities for thed-dimensional independent percolation problem. Assuming the existence of critical exponents, these inequalities imply: $$\begin{gathered} f + v \geqq 1 + \beta _Q , \hfill \\ \mu + v \geqq 1 + \beta _Q , \hfill \\ \zeta \geqq \min \left\{ {1,\frac{{v^, }}{v}} \right\}, \hfill \\ \end{gathered} $$ where the above exponents aref: the flow constant exponent, ν(ν′): the correlation length exponent below (above) threshold, μ: the surface tension exponent, β Q : the backbone density exponent and ζ: the chemical distance exponent. Note that all of these inequalities are mean-field bounds, and that they relate the exponentv defined from below the percolation threshold to exponents defined from above threshold. Furthermore, we combine the strategy of the proofs of these inequalities with notions of finite-size scaling to derive: $$\max \{ dv,dv^, \} \geqq 1 + \beta _Q ,$$ whered is the lattice dimension. Since β Q ≧2β, where β is the percolation density exponent, the final bound implies that, below six dimensions, the standard order parameter and correlation length exponents cannot simultaneously assume their mean-field values; hence an implicit bound on the upper critical dimension:d c ≧6.  相似文献   

2.
Let O be a closed Poisson conjugacy class of the complex algebraic Poisson group GL(n) relative to the Drinfeld-Jimbo factorizable classical r-matrix. Denote by T the maximal torus of diagonal matrices in GL(n). With every ${a \in O \cap T}$ we associate a highest weight module M a over the quantum group ${U_q \bigl(\mathfrak{g} \mathfrak{l}(n)\bigr)}$ and an equivariant quantization ${\mathbb{C}_{\hbar,a}[O]}$ of the polynomial ring ${\mathbb{C}[O]}$ realized by operators on M a . All quantizations ${\mathbb{C}_{\hbar,a}[O]}$ are isomorphic and can be regarded as different exact representations of the same algebra, ${\mathbb{C}_{\hbar}[O]}$ . Similar results are obtained for semisimple adjoint orbits in ${\mathfrak{g} \mathfrak{l}(n)}$ equipped with the canonical GL(n)-invariant Poisson structure.  相似文献   

3.
We give a presentation of the endomorphism algebra ${\rm End}_{\mathcal {U}_{q}(\mathfrak {sl}_{2})}(V^{\otimes r})$ , where V is the three-dimensional irreducible module for quantum ${\mathfrak {sl}_2}$ over the function field ${\mathbb {C}(q^{\frac{1}{2}})}$ . This will be as a quotient of the Birman–Wenzl–Murakami algebra BMW r (q) : =  BMW r (q ?4, q 2 ? q ?2) by an ideal generated by a single idempotent Φ q . Our presentation is in analogy with the case where V is replaced by the two-dimensional irreducible ${\mathcal {U}_q(\mathfrak {sl}_{2})}$ -module, the BMW algebra is replaced by the Hecke algebra H r (q) of type A r-1, Φ q is replaced by the quantum alternator in H 3(q), and the endomorphism algebra is the classical realisation of the Temperley–Lieb algebra on tensor space. In particular, we show that all relations among the endomorphisms defined by the R-matrices on ${V^{\otimes r}}$ are consequences of relations among the three R-matrices acting on ${V^{\otimes 4}}$ . The proof makes extensive use of the theory of cellular algebras. Potential applications include the decomposition of tensor powers when q is a root of unity.  相似文献   

4.
5.
6.
7.
We calculate the Lyapunov exponents describing spatial clustering of particles advected in one- and two-dimensional random velocity fields at finite Kubo numbers $\operatorname {Ku}$ (a dimensionless parameter characterising the correlation time of the velocity field). In one dimension we obtain accurate results up to $\operatorname {Ku}\sim 1$ by resummation of a perturbation expansion in $\operatorname {Ku}$ . At large Kubo numbers we compute the Lyapunov exponent by taking into account the fact that the particles follow the minima of the potential function corresponding to the velocity field. The Lyapunov exponent is always negative. In two spatial dimensions the sign of the maximal Lyapunov exponent λ 1 may change, depending upon the degree of compressibility of the flow and the Kubo number. For small Kubo numbers we compute the first four non-vanishing terms in the small- $\operatorname {Ku}$ expansion of the Lyapunov exponents. By resumming these expansions we obtain a precise estimate of the location of the path-coalescence transition (where λ 1 changes sign) for Kubo numbers up to approximately $\operatorname{Ku} = 0.5$ . For large Kubo numbers we estimate the Lyapunov exponents for a partially compressible velocity field by assuming that the particles sample those stagnation points of the velocity field that have a negative real part of the maximal eigenvalue of the matrix of flow-velocity gradients.  相似文献   

8.
We prove that self-avoiding walk on ${\mathbb{Z}^d}$ is sub-ballistic in any dimension d ≥ 2. That is, writing ${\| u \|}$ for the Euclidean norm of ${u \in \mathbb{Z}^d}$ , and ${\mathsf{P_{SAW}}_n}$ for the uniform measure on self-avoiding walks ${\gamma : \{0, \ldots, n\} \to \mathbb{Z}^d}$ for which γ 0 = 0, we show that, for each v > 0, there exists ${\varepsilon > 0}$ such that, for each ${n \in \mathbb{N}, \mathsf{P_{SAW}}_n \big( {\rm max}\big\{\| \gamma_k \| : 0 \leq k \leq n\big\} \geq vn \big) \leq e^{-\varepsilon n}}$ .  相似文献   

9.
We calculate the amplitude of $gg\to b\bar{b}$ production for the colour singlet, J z =0, di-gluon state at $\mathcal{O}(\alpha_{\mathrm{S}}^{2})$ order. We consider the cancellation and a realistic cut-off, of the infrared divergent terms. We show that the one-loop radiative QCD contributions effectively reduce the Born level result for the central exclusive $b\bar{b}$ cross section at the LHC. This process is essentially the only irreducible QCD background to the exclusive $H\to b\bar{b}$ signal.  相似文献   

10.
Let $\mathcal{B}(\mathcal{H})$ be the set of all bounded linear operators on the separable Hilbert space  $\mathcal{H}$ . A (generalized) quantum operation is a bounded linear operator defined on  $\mathcal{B}(\mathcal{H})$ , which has the form $\varPhi_{\mathcal{A}}(X)=\sum_{i=1}^{\infty}A_{i}XA_{i}^{*}$ , where $A_{i}\in\mathcal{B}(\mathcal{H})$ (i=1,2,…) satisfy $\sum_{i=1}^{\infty}A_{i}A_{i}^{*}\leq \nobreak I$ in the strong operator topology. In this paper, we establish the relationship between the (generalized) quantum operation $\varPhi_{\mathcal{A}}$ and its dual $\varPhi_{\mathcal {A}}^{\dag}$ with respect to the set of fixed points and the noiseless subspace. In particular, we also partially characterize the extreme points of the set of all (generalized) quantum operations and give some equivalent conditions for the correctable quantum channel.  相似文献   

11.
The Lie–Rinehart algebra of a (connected) manifold ${\mathcal {M}}$ , defined by the Lie structure of the vector fields, their action and their module structure over ${C^\infty({\mathcal {M}})}$ , is a common, diffeomorphism invariant, algebra for both classical and quantum mechanics. Its (noncommutative) Poisson universal enveloping algebra ${\Lambda_{R}({\mathcal {M}})}$ , with the Lie–Rinehart product identified with the symmetric product, contains a central variable (a central sequence for non-compact ${{\mathcal {M}}}$ ) ${Z}$ which relates the commutators to the Lie products. Classical and quantum mechanics are its only factorial realizations, corresponding to Z  =  i z, z  =  0 and ${z = \hbar}$ , respectively; canonical quantization uniquely follows from such a general geometrical structure. For ${z =\hbar \neq 0}$ , the regular factorial Hilbert space representations of ${\Lambda_{R}({\mathcal{M}})}$ describe quantum mechanics on ${{\mathcal {M}}}$ . For z  =  0, if Diff( ${{\mathcal {M}}}$ ) is unitarily implemented, they are unitarily equivalent, up to multiplicity, to the representation defined by classical mechanics on ${{\mathcal {M}}}$ .  相似文献   

12.
For integers n,q=1,2,3,…?, let Pol n,q denote the ${\mathbb{C}}$ -linear space of polynomials in z and $\bar{z}$ , of degree ≤n?1 in z and of degree ≤q?1 in $\bar{z}$ . We supply Pol n,q with the inner product structure of $$\begin{aligned} L^2 \bigl({\mathbb{C}},\mathrm{e}^{-m|z|^2} {\mathrm{d}}A \bigr),\quad \mbox {where } {\mathrm{d}}A(z)=\pi^{-1}{\mathrm{d}}x {\mathrm{d}}y,\ z= x+ {\mathrm{i}}y; \end{aligned}$$ the resulting Hilbert space is denoted by Pol m,n,q . Here, it is assumed that m is a positive real. We let K m,n,q denote the reproducing kernel of Pol m,n,q , and study the associated determinantal process, in the limit as m,n→+∞ while n=m+O(1); the number q, the degree of polyanalyticity, is kept fixed. We call these processes polyanalytic Ginibre ensembles, because they generalize the Ginibre ensemble—the eigenvalue process of random (normal) matrices with Gaussian weight. There is a physical interpretation in terms of a system of free fermions in a uniform magnetic field so that a fixed number of the first Landau levels have been filled. We consider local blow-ups of the polyanalytic Ginibre ensembles around points in the spectral droplet, which is here the closed unit disk $\bar{\mathbb{D}}:=\{z\in{\mathbb{C}}:|z|\le1\}$ . We obtain asymptotics for the blow-up process, using a blow-up to characteristic distance m ?1/2; the typical distance is the same both for interior and for boundary points of $\bar{\mathbb{D}}$ . This amounts to obtaining the asymptotical behavior of the generating kernel K m,n,q . Following (Ameur et al. in Commun. Pure Appl. Math. 63(12):1533–1584, 2010), the asymptotics of the K m,n,q are rather conveniently expressed in terms of the Berezin measure (and density) For interior points |z|<1, we obtain that ${\mathrm{d}}B^{\langle z\rangle}_{m,n,q}(w)\to{\mathrm{d}}\delta_{z} $ in the weak-star sense, where δ z denotes the unit point mass at z. Moreover, if we blow up to the scale of m ?1/2 around z, we get convergence to a measure which is Gaussian for q=1, but exhibits more complicated Fresnel zone behavior for q>1. In contrast, for exterior points |z|>1, we have instead that ${\mathrm{d}}B^{\langle z\rangle}_{m,n,q}(w) \to{\mathrm{d}}\omega(w,z, {\mathbb{D}}^{e}) $ , where ${\mathrm{d}}\omega(w,z,{\mathbb{D}}^{e})$ is the harmonic measure at z with respect to the exterior disk ${\mathbb{D}}^{e}:= \{w\in{\mathbb{C}}:\, |w|>1\}$ . For boundary points, |z|=1, the Berezin measure ${\mathrm{d}}B^{\langle z\rangle}_{m,n,q}$ converges to the unit point mass at z, as with interior points, but the blow-up to the scale m ?1/2 exhibits quite different behavior at boundary points compared with interior points. We also obtain the asymptotic boundary behavior of the 1-point function at the coarser local scale q 1/2 m ?1/2.  相似文献   

13.
Bedangadas Mohanty 《Pramana》2014,83(5):705-712
Two measurements related to the proton and antiproton production near midrapidity in \(\sqrt {s_{{NN}}} = 7.7\) , 11.5, 19.6, 27, 39, 62.4 and 200 GeV Au+Au collisions using the STAR detector at the Relativistic Heavy Ion Collider (RHIC) are discussed. At intermediate impact parameters, the net-proton midrapidity dv 1/dy, where v 1 and y are directed flow and rapidity, respectively, shows non-monotonic variation as a function of beam energy. This non-monotonic variation is characterized by the presence of a minimum in dv 1/dy between \(\sqrt {s_{NN}} = 11.5\) and 19.6 GeV and a change in the sign of dv 1/dy twice between \(\sqrt {s_{{NN}}}\) = 7.7 and 39 GeV. At small impact parameters the product of the moments of net-proton distribution, kurtosis × variance (κ σ 2) and skewness × standard deviation (S σ) are observed to be significantly below the corresponding measurements at large impact parameter collisions for \(\sqrt {s_{{NN}}}\) = 19.6 and 27 GeV. The κ σ 2 and S σ values at these beam energies deviate from the expectations from Poisson statistics and that from a hadron resonance gas model. Both these measurements have implications towards understanding the quantum chromodynamics (QCD) phase structures, the first-order phase transition and the critical point in the high baryonic chemical potential region of the phase diagram.  相似文献   

14.
The Ising-like anisotropy parameter δ in the Kondo necklace model is analyzed using the bond-operator method at zero and finite temperatures for arbitrary d dimensions. A decoupling scheme on the double time Green's functions is used to find the dispersion relation for the excitations of the system. At zero temperature and in the paramagnetic side of the phase diagram, we determine the spin gap exponent νz≈0.5 in three dimensions and anisotropy between 0?δ?1, a result consistent with the dynamic exponent z=1 for the Gaussian character of the bond-operator treatment. On the other hand, in the antiferromagnetic phase at low but finite temperatures, the line of Neel transitions is calculated for δ?1. For d>2 it is only re-normalized by the anisotropy parameter and varies with the distance to the quantum critical point (QCP) |g| as, TN∝|g|ψ where the shift exponent ψ=1/(d-1). Nevertheless, in two dimensions, a long-range magnetic order occurs only at T=0 for any δ?1. In the paramagnetic phase, we also find a power law temperature dependence on the specific heat at the quantum critical trajectoryJ/t=(J/t)c, T→0. It behaves as CVTd for δ?1 and ≈1, in concordance with the scaling theory for z=1.  相似文献   

15.
We consider Hermitian and symmetric random band matrices H = (h xy ) in ${d\,\geqslant\,1}$ d ? 1 dimensions. The matrix entries h xy , indexed by ${x,y \in (\mathbb{Z}/L\mathbb{Z})^d}$ x , y ∈ ( Z / L Z ) d , are independent, centred random variables with variances ${s_{xy} = \mathbb{E} |h_{xy}|^2}$ s x y = E | h x y | 2 . We assume that s xy is negligible if |x ? y| exceeds the band width W. In one dimension we prove that the eigenvectors of H are delocalized if ${W\gg L^{4/5}}$ W ? L 4 / 5 . We also show that the magnitude of the matrix entries ${|{G_{xy}}|^2}$ | G x y | 2 of the resolvent ${G=G(z)=(H-z)^{-1}}$ G = G ( z ) = ( H - z ) - 1 is self-averaging and we compute ${\mathbb{E} |{G_{xy}}|^2}$ E | G x y | 2 . We show that, as ${L\to\infty}$ L → ∞ and ${W\gg L^{4/5}}$ W ? L 4 / 5 , the behaviour of ${\mathbb{E} |G_{xy}|^2}$ E | G x y | 2 is governed by a diffusion operator whose diffusion constant we compute. Similar results are obtained in higher dimensions.  相似文献   

16.
We study a class of finite dimensional quantum dynamical semigroups $\{\mathrm {e}^{t\mathcal{L}}\}_{t\geq0}$ whose generators $\mathcal{L}$ are sums of Lindbladians satisfying the detailed balance condition. Such semigroups arise in the weak coupling (van Hove) limit of Hamiltonian dynamical systems describing open quantum systems out of equilibrium. We prove a general entropic fluctuation theorem for this class of semigroups by relating the cumulant generating function of entropy transport to the spectrum of a family of deformations of the generator ${\mathcal{L}}$ . We show that, besides the celebrated Evans-Searles symmetry, this cumulant generating function also satisfies the translation symmetry recently discovered by Andrieux et al., and that in the linear regime near equilibrium these two symmetries yield Kubo’s and Onsager’s linear response relations.  相似文献   

17.
A representation of a specialization of a q-deformed class one lattice ${\mathfrak{gl}_{\ell+1}}$ -Whittaker function in terms of cohomology groups of line bundles on the space ${\mathcal{QM}_d(\mathbb{P}^{\ell})}$ of quasi-maps ${\mathbb{P}^1 \to \mathbb{P}^{\ell}}$ of degree d is proposed. For ? = 1, this provides an interpretation of the non-specialized q-deformed ${\mathfrak{gl}_{2}}$ -Whittaker function in terms of ${\mathcal{QM}_d(\mathbb{P}^1)}$ . In particular the (q-version of the) Mellin-Barnes representation of the ${\mathfrak{gl}_2}$ -Whittaker function is realized as a semi-infinite period map. The explicit form of the period map manifests an important role of q-version of Γ-function as a topological genus in semi-infinite geometry. A relation with the Givental-Lee universal solution (J-function) of q-deformed ${\mathfrak{gl}_2}$ -Toda chain is also discussed.  相似文献   

18.
19.
The rare decay K L 0 → π0ν $ \tilde v $ branching ratio measurement is one of the clearest Standard Model test. Calculations based on the SM predict Br(K L 0 → π0ν $ \tilde v $ ) ≈ 2.8 × 10?11, but the most accurate experimental value Br(K L 0 → π0ν $ \tilde v $ ) < 6.7 × 10?8 (90% C.L.). We present design of a new experimental setup KLOD (U-70 accelerator, IHEP, Protvino) for K L 0 → π0ν $ \tilde v $ branching ratio measurement. Sensitivity of the KLOD experiment will be enough for registration of 2.4 events K L 0 → π0ν $ \tilde v $ for every 10 days of the data taking (according to SM predictions).  相似文献   

20.
We estimate $BR(K \to \pi \nu \bar \nu )$ in the context of the Standard Model by fitting for λ tV tdV ts * of the “kaon unitarity triangle” relation. To find the vertex of this triangle, we fit data from |? K|, the CP-violating parameter describing K mixing, and a ψ,K , the CP-violating asymmetry in B d 0 J/ψK 0 decays, and obtain the values $\left. {BR(K \to \pi \nu \bar \nu )} \right|_{SM} = (7.07 \pm 1.03) \times 10^{ - 11} $ and $\left. {BR(K_L^0 \to \pi ^0 \nu \bar \nu )} \right|_{SM} = (2.60 \pm 0.52) \times 10^{ - 11} $ . Our estimate is independent of the CKM matrix element V cb and of the ratio of B-mixing frequencies ${{\Delta m_{B_s } } \mathord{\left/ {\vphantom {{\Delta m_{B_s } } {\Delta m_{B_d } }}} \right. \kern-0em} {\Delta m_{B_d } }}$ . We also use the constraint estimation of λ t with additional data from $\Delta m_{B_d } $ and |V ub|. This combined analysis slightly increases the precision of the rate estimation of $K^ + \to \pi ^ + \nu \bar \nu $ and $K_L^0 \to \pi ^0 \nu \bar \nu $ (by ?10 and ?20%, respectively). The measured value of $BR(K^ + \to \pi ^ + \nu \bar \nu )$ can be compared both to this estimate and to predictions made from ${{\Delta m_{B_s } } \mathord{\left/ {\vphantom {{\Delta m_{B_s } } {\Delta m_{B_d } }}} \right. \kern-0em} {\Delta m_{B_d } }}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号