首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron-impact ionization in a time-of-flight mass spectrometer of C(20)H(0-3)Br(14-12) probes-secured from C(20)H(20) dodecahedrane by a "brute-force" bromination protocol-provided bromine-free C(20)H(0-2(3)) anions in amounts that allowed the clean mass-separation of the hydrogen-free C(20) (-) ions and the photoelectron (PE) spectroscopic characterization as C(20) fullerene (electron affinity (EA)=2.25+/-0.03 eV, vibrational progressions of 730+/-70). The extremely strained C(20) fullerene ions surfaced as kinetically rather stable entities (lifetime of at least the total flight time of 0.4 ms); they only very sluggishly expel a C(2) unit. The HOMO and LUMO are suggested to be almost degenerate (DeltaE=0.27 eV). The assignment as a fullerene was corroborated by the PE characterization of the C(20) bowl (EA=2.17+/-0.03 eV, vibrational progression of 2060+/-50 cm(-1)) analogously generated from C(20)H(10) corannulene (C(20)H(1-3)Br(9-8) samples) and comparably stable. Highly resolved low-temperature PE spectra of the known C(20) ring (EA=2.49+/-0.03 eV, vibrational progressions 2022+/-45 and 455+/-30 cm(-1)), obtained from graphite, display an admixture of, most probably, a bicyclic isomer (EA=3.40+/-0.03 eV, vibrational progression 455+/-30 cm(-1)). The C(20) (+(-)) and C(20)H(2) (+(-)) cluster ions generated from polybrominated perylene (C(20)H(0-2)Br(12-10)) have (most probably) retained the planar perylene-type skeleton (sheet, EA=2.47+/-0.03 eV, vibrational progressions of 2089+/-30 and 492+/-30 cm(-1) and EA=2.18+/-0.03 eV, vibrational progressions of 2105+/-30 and 468+/-30 cm(-1)).  相似文献   

2.
The 3465 classical isomers of C(64) fullerene have been investigated by quantum chemical methods PM3, and the most stable isomers have been refined with HCTH/3-21G//SVWN/STO-3G, B3LYP/6-31G(d)//HCTH/3-21G, and B3LYP/6-311G(d)//B3LYP/6-31G(d) level. C(64)(D(2):0003) with the lowest e(55) (e(55) = 2), the number of pentagon-pentagon fusions, is predicted to be the most stable isomer and it is followed by the C(64)(C(s):0077) and C(64)(C(2):0103) isomers within relative energy of 20.0 kcal/mol. C(64)(D(2):0003) prevails in a wide temperature range according to energy analysis with entropy contribution at B3LYP/6-31G(d) level. The simulated IR spectra and electronic spectra help to identify different fullerene isomers. All the hexagons in the isomers with e(55) = 2 display local aromaticity. The relative stabilities of C(64) isomers change with charging in ionic states. Doping also affects the relative stabilities of fullerene isomers as demonstrated by Sc(2)@C(64)(D(2):0003) and Sc(2)@C(64)(C(s):0077). The bonding of Sc atoms with C(64) elongates the C-C bond of two adjacent pentagons and enhances the local aromaticity of the fullerene cages. Charging, doping, and derativization can be utilized to isolate C(64) isomers through differentiating the electronic and steric effects.  相似文献   

3.
The complete set of 271 classical fullerene isomers of C50 has been studied by full geometry optimizations at the SAM1, PM3, AM1, and MNDO quantum-chemical levels, and their lower energy structures have also been partially computed at the ab initio levels of theory. A D(5h) species, with the least number of pentagon adjacency, is predicted by all semiempirical methods and the HF/4-31G calculations as the lowest energy structure, but the B3LYP/6-31G* geometry optimizations favor a D3 structure (with the largest HOMO-LUMO gap and the second least number of adjacent pentagons) energetically lower (-2 kcal/mol) than the D(5h) isomer. To clarify the relative stabilities at elevated temperatures, the entropy contributions are taken into account on the basis of the Gibbs energy at the HF/4-31G level for the first time. The computed relative-stability interchanges show that the D3 isomer behaves more thermodynamically stable than the D(5h) species within a wide temperature interval related to fullerene formation. According to a newly reported experimental observation, the structural/energetic properties and relative stabilities of both critical isomers (D(5h) and D3) are analyzed along with the experimentally identified decachlorofullerene C50Cl10 of D(5h) symmetry. Some features of higher symmetry C50 nanotube-type isomers are also discussed.  相似文献   

4.
Vibrational structures of C60-related finite-length nanotubes, C(40+20n) and C(42+18n) (1 < or = n < or = 4), in which n is, respectively, the number of cyclic cis- and trans-polyene chains inserted between fullerene hemispheres, are analyzed from density functional theory (DFT) calculations. To illuminate the end-cap effects on their vibrational structures, the corresponding tubes terminated by H atoms C(20n)H20 and C(18n)H18 (1 < or = n < or = 5) are also investigated. DFT calculations show a broad range of vibrational frequencies for the finite-size nanotubes: high-frequency modes (1100-1600 cm(-1)) containing oscillations along tangential directions (tangential modes), medium-frequency modes (700-850 cm(-1)) whose oscillations are located on the edges or end caps, and low-frequency modes (300-600 cm(-1)) involving oscillations along the radial directions (radial modes). Broadening of the calculated frequencies is due to the number of nodes in the standing waves of normal modes in the finite-size tubes. In the capped tubes, calculated vibrational frequencies are insensitive to the number of chains (n), whereas in the uncapped tubes, most vibrational frequencies change significantly with an increase in tube length. The discrepancy in the size dependency is reasonably understood by their C-C bonding networks; the capped tubes have similar bond-length alternation patterns within the polyene chains irrespective of n, whereas the uncapped tubes have various bond-deformation patterns. Thus, DFT calculations illuminate that the edge effects have strong impacts on the vibrational frequencies in the finite-size nanotubes.  相似文献   

5.
The structural, electronic, vibrational, optical, magnetic, and aromatic characteristics of Si(n), Si(n) (1-), Si(n) (2-), and Si(n) (1+), clusters have been calculated very accurately with a variety of high level ab initio techniques. These calculations have been performed with the aim to clarify existing ambiguities in the literature and to bring up the fluxional and aromatic characteristics of these species. The fluxional behavior, according to earlier conjecture of the present author, could be connected to the magic property. In addition such behavior could also explain the existence of conflicting results. The ab initio techniques include quadratic configuration interaction, coupled cluster, and multireference second order perturbation theory, together with density functional theory ("static" and time dependent) with the hybrid B3LYP functional. Various high quality correlation-consistent basis sets, ranging from 2Z up to 5Z quality, were employed. It is demonstrated that Si(6) is fluxional, fluctuating around a symmetric D(4h) structure. Si(10) is also fluxional but to a lesser degree, in contrast to Si(10) (1-) anion which is highly fluxional. For both clusters, in full agreement with Wade's and Lipscomb's rules for deltahedral boranes, the corresponding dianions have higher symmetry (O(h) and D(4d), respectively) and lower energy than the neutral clusters. The aromatic behavior of Si(6) fits better to a mixed conflicting aromaticity picture. This type of aromatic and fluxional behavior has also been observed in stable "magic" carbon clusters as C(6) and carbon fullerenes such as C(20). The present results, which support possible connection of fluxional and magic properties, are in excellent agreement with experimental measurements of ionization energies, electron affinities, and vibrationally resolved photoelectron spectra.  相似文献   

6.
The concept of aromaticity was first invented to account for the unusual stability of planar organic molecules with 4n + 2 delocalized pi electrons. Recent photoelectron spectroscopy experiments on all-metal MAl(4)(-) systems with an approximate square planar Al(4)(2-) unit and an alkali metal led to the suggestion that Al(4)(2-) is aromatic. The square Al(4)(2-) structure was recognized as the prototype of a new family of aromatic molecules. High-level ab initio calculations based on extrapolating CCSD(T)/aug-cc-pVxZ (x = D, T, and Q) to the complete basis set limit were used to calculate the first electron affinities of Al(n)(), n = 0-4. The calculated electron affinities, 0.41 eV (n = 0), 1.51 eV (n = 1), 1.89 eV (n = 3), and 2.18 eV (n = 4), are all in excellent agreement with available experimental data. On the basis of the high-level ab initio quantum chemical calculations, we can estimate the resonance energy and show that it is quite large, large enough to stabilize Al(4)(2-) with respect to Al(4). Analysis of the calculated results shows that the aromaticity of Al(4)(2-) is unusual and different from that of C(6)H(6). Particularly, compared to the usual (1-fold) pi aromaticity in C(6)H(6), which may be represented by two Kekulé structures sharing a common sigma bond framework, the square Al(4)(2-) structure has an unusual "multiple-fold" aromaticity determined by three independent delocalized (pi and sigma) bonding systems, each of which satisfies the 4n + 2 electron counting rule, leading to a total of 4 x 4 x 4 = 64 potential resonating Kekulé-like structures without a common sigma frame. We also discuss the 2-fold aromaticity (pi plus sigma) of the Al(3)(-) anion, which can be represented by 3 x 3 = 9 potential resonating Kekulé-like structures, each with two localized chemical bonds. These results lead us to suggest a general approach (applicable to both organic and inorganic molecules) for examining delocalized chemical bonding. The possible electronic contribution to the aromaticity of a molecule should not be limited to only one particular delocalized bonding system satisfying a certain electron counting rule of aromaticity. More than one independent delocalized bonding system can simultaneously satisfy the electron counting rule of aromaticity, and therefore, a molecular structure could have multiple-fold aromaticity.  相似文献   

7.
Theoretical study on the small clusters of LiH, NaH, BeH(2), and MgH(2)   总被引:1,自引:0,他引:1  
High-level ab initio molecular orbital theory is used to calculate the geometries, vibrational frequencies, atomic charges, and binding energies of the small clusters (LiH)(n), (NaH)(n), (BeH(2))(n), and (MgH(2))(n) (n = 1-4). For (LiH)(n) and (NaH)(n), there are planar cyclic structures when n = 2, 3. We have found the cubic structure T(d) in addition to the planar cyclic D(4)(h) when n = 4. The D(4)(h) is less stable than the T(d) geometry. For (BeH(2))(n) and (MgH(2))(n), when n = 3, there are three kinds of structures: chain C(2)(v), planar cyclic D(3)(h), and hat-like C(2)(v). The C(2)(v) geometry is more stable than the others. When n = 4, there are four kinds of structures: chain D(2)(h), cubic T(d), string-like C(2), and cubic transformation C(1). The most stable compounds in the families of (LiH)(n), (NaH)(n), (BeH(2))(n), and (MgH(2))(n) are cubic T(d), cubic T(d), chain D(2)(h), and string-like C(2) geometries, respectively, when n = 4. Calculated binding energies range from -24 to -37 kcal/mol for (LiH)(n) and --19 to -30 kcal/mol for (NaH)(n), (BeH(2))(n), and (MgH(2))(n). The hydrogen atoms in hydride clusters always have negative charges. The atomic charges of planar cyclic structures are weaker than those of cubic structures, and there is a tendency of reducing along with the increase of the cluster size. The vibrational frequencies of planar cyclic structures have consistent tendency, too. It indicates that the bond distance increases with the ionic character of the bond.  相似文献   

8.
The aromaticity of all possible substituted fullerene isomers of C18N2, C18B2, C18BN, and their molecularions which originate from the C20 (Ih) cage were studied by the topological resonance energy (TRE) and the percentage topological resonance energy methods. The relationship between the aromaticity of C18BxNy isomers and the sites where the heteroatoms dope at the C20 (Ih) cage is discussed. Calculation results show that at the neutral and cationic states all the isomers are predicted to be antiaromatic with negative TREs, but their polyvalent anions are predicted to be aromatic with positive TREs. The most stable isomer is formed by heteroatom doping at the 1,11-sites in C18N2, C18B2, and C18BN. Heterofullerenes are more aromatic than C20. The stability order in the neutral states is C18N2>C18BN>C18B2>C20. The stability order in closed-shell is C18B2 8->C20 6->C18BN6->C18N2 4-. This predicts theoretically that their polyvalent anions have high aromaticity.  相似文献   

9.
The quenching rate constants of singlet oxygen by C60, H2@C60, D2@C6o, H2, and D2 in solution were measured. The presence of a hydrogen (H2@C60) or deuterium (D2@C60) molecule inside the fullerene did not produce any observable effect based on triplet lifetime or EPR measurements. However, a remarkable effect was found for the 1O2 quenching by C60, H2@C60, D2@C6o, H2, and D2. Singlet oxygen was generated by photosensitization or by thermal decomposition of naphthalene endoperoxide derivatives. Comparison of the rate constants for quenching of 1O2 by H2@C60 and D2@C60 demonstrates a significant vibrational interaction between oxygen and H2 inside the fullerene. The quenching rate constant for H2 is 1 order of magnitude higher than that of D2, in agreement with the results observed for the quenching of 1O2 with H2@C60 or D2@C60.  相似文献   

10.
All the 924 classical isomers of fullerene C(56) have been investigated by PM3, and some most stable isomers are refined with HCTH/3-21G and B3LYP6-31G(d) methods. D(2):003 with the least number of adjacent pentagons is predicted to be the most stable isomer at B3LYP/6-31G(d) level, while C(s):022 and C(2):049 possess nearly degenerate energies with relative energies of 0.03 and 3.90 kcal/mol, respectively. However, as to dianionic C(56)(2-) fullerene, C(2v):011 is predicted to be the most stable isomer. Investigations also show that the encapsulation of Ca atom in C(56) fullerene is exothermic and the metallofullerenes Ca@C(56) can be described as Ca(2+)@C(56)(2-). The computed relative stabilities show that the D(2):003 behaves more thermodynamically stable than other isomers in a wide temperature interval, and C(2v):011 should also be an important component. The electronic isomerization of C(56) (C(2v):011) and C(50) (D(5h):002) indicates that this phenomenon might be rather general in fullerenes and causes different properties, thus bringing about new possible applications of fullerenes. The static second-order hyperpolarizabilities of the three most stable isomers are slightly larger than that of C(60).  相似文献   

11.
1 NTRODUCTION Pagodane ([1.1.1.1]-pagodane) is the trivial name assigned to the D2h-symmetry undecacyclic poly- quinane undecacyclo-[9.9.0.01,5.02,12.02,18.03,7.06,10. 08,12.011,15.013,17.316,20]-eicosane (Fig. 1). It has been synthesized[1] and subsequently studied by Prinzbach and co-workers for more than twenty years[2, 3]. Des- cribed as a waxy solid melting without decomposi-tion and stable to at least 600 ℃ in gas phase, pa- godane is interesting for its exotic structure and as an…  相似文献   

12.
The drum-like C4nNn (n = 3-8) cages and corresponding hydrogenated products C4n H4nN2n (n = 3-8) are studied at the DFT B3LYP/6-31G** level. Their structures, energies, and vibrational frequencies have been investigated. Comparison of heat of formation reveals that C32N16 with D8h symmetry in the C4nN2n (n = 3-8) series is a promising candidate as high energy density matter. The calculation of the DeltaG and DeltaH for the hydrogenation of C4nN2n (n = 3-8) shows that it is an exothermic reaction at 298 K and the C4nH4nN2n (n = 3-8) species are more stable than C4nN2n (n = 3-8) species. The analysis of molecular orbital and selected bond lengths of N-N and C-C provides another insight about their stability. Combined with the nucleus-independent chemical shifts (NICS) calculation, it is indicated that molecular stability for cage-shaped molecules depends on not only aromatic character but also the cage effect.  相似文献   

13.
BiS(C-p-carboranyl)(C2B10H11)2是一种稠合型碳硼烷,由2个C2B10H11集团通过C-C键联结构成.Leites已发表了其实验振动光谱[1],理论计算尚未见报道,本文对其几何优化、振动光谱及其指认进行从头计算研究.1计算方法首先在STO-3G下对标题化合物D5d与D5h两种构型进行从头算,确定D5d为其稳定构型,进而保持D5d对称性不变,并在6-31G下进行几何优化及振动光谱的理论研究,全部计算采用Gaussion-94程序,在CrayS-MP/11型计算机上完成.2结果与讨论2.1几何优化优化几何及部分实验键长列于表1.标题化合物在D5d与D5h两种…  相似文献   

14.
采用B3LYP/6-311+G**方法, 研究了一种新型的包含平面四配位碳(ptC)二硼有机化合物C9B2H6的结构、稳定性和振动频率. 计算结果表明, C9B2H6结构的稳定性和两个硼原子的位置有很大关系, 硼原子起给予σ电子和接受π电子的作用. 在C9B2H6的15个异构体中, 最稳定的结构是具有C2v对称性的异构体(1,5), 在异构体(1,5)中, 两个硼原子位于同一个六元环中且与ptC相邻. 而且占据的π轨道说明异构体(1,5)具有10个π电子, 满足4n+2规则. 计算的核独立化学位移(NICS)值显示异构体(1,5)强的芳香性位于C9B2H6的两个三元环而不是两个六元环上.  相似文献   

15.
The 2385 classical isomers and four nonclassical isomers of fullerene C62 have been studied by PM3, HCTH/3-21G//SVWN/STO-3G, B3LYP/6-31G(d)//HCTH/3-21G, and B3LYP/6-31G(d)//B3LYP/6-31G(d). The Cs:7mbr isomer, with a chain of four adjacent pentagons surrounding a heptagon, is predicted to be the most stable isomer, followed by C2v:4mbr which is 3.15 kcal/mol higher in energy. C2:0032 with three pairs of adjacent pentagons is the most stable isomer in the classical framework. To clarify the relative stabilities of C62 isomers at high temperatures, the entropy contributions are taken into account on the basis of the Gibbs energy at the B3LYP/6-31G(d) level. Analyses reveal that Cs:7mbr prevails in a wide temperature range. The vibrational frequencies of the five most stable C62 fullerene isomers are also predicted at the B3LYP/6-31G(d) level, and the simulated IR spectra show important differences in positions and intensities of the vibrational modes for different isomers. The nucleus-independent chemical shift and the density of states of the three most stable isomers show that the square in C2v:4mbr and the adjacent pentagons in Cs:7mbr and C2:0032 possess high chemical reactivity. In addition, the electronic spectra and second-order hyperpolarizabilities are determined by means of ZINDO and the sum-over-states mode. The intensity-dependent refractive index gamma(-omega; omega, omega, -omega) at omega = 2.3305 eV of Cs:7mbr is very large because of resonance with the external field. The second-order hyperpolarizabilities of the five most stable isomers of C62 are predicted to be larger than those of C60.  相似文献   

16.
The 437 classical isomers of fullerene C52 have been studied by PM3, HCTH/3-21G, and B3LYP6-31G(d). C(2):029 with the least number of adjacent pentagons is predicted to be the most stable isomer. The investigations show that both the number of adjacent pentagons and the degree of aromaticity play important roles in the relative stabilities of fullerene isomers. To clarify the relative stabilities of the C52 isomers in a wide range of temperatures, the entropy contributions are taken into account on the basis of the Gibbs energy at the B3LYP6-31G(d) level. C(2):029 prevails in a wide temperature range. In addition, the electronic spectra and second-order hyperpolarizabilities are determined by means of ZINDO and sum-over-states model. The static second-order hyperpolarizability of C(2):029 is 51% larger than that of C60. Furthermore, intensity-dependent refractive index gamma (-omega;omega,omega,-omega) (omega=1.1653 eV) of C(2):029 is 13 times larger than that of C60. The encapsulation of Ca atom in C52 fullerene is exothermic and the metallofullerene Ca-C52 is described as Ca2+-C52(2-).  相似文献   

17.
C(60).C(8)H(8) and C(70).C(8)H(8) are prototypes of rotor-stator cocrystals. We present infrared and Raman spectra of these materials and show how the rotor-stator nature is reflected in their vibrational properties. We measured the vibrational spectra of the polymer phases poly(C(60)C(8)H(8)) and poly(C(70)C(8)H(8)) resulting from a solid-state reaction occurring on heating. On the basis of the spectra, we propose a connection pattern for the fullerene in poly(C(60)C(8)H(8)), where the symmetry of the C(60) molecule is D(2h). On illuminating the C(60).C(8)H(8) cocrystal with green or blue light, a photochemical reaction was observed leading to a product similar to that of the thermal polymerization.  相似文献   

18.
用键共振能和拓扑共振能方法对富勒烯C36CH2开环结构中的所有可能异构体及其阳离子和阴离子芳香性进行了研究. 计算结果表明, C36CH2异构体的稳定性与D6hD2d异构体中各键的键共振能直接有关, 且CH2基团插入在5/5键时得到的异构体最稳定. C36CH2的阳离子因其共振能为负值而具有反芳香性. 反之, C36CH2阴离子因共振能为正值而具有较高的芳香性和稳定性. 从理论上预计C36CH2的高价阴离子具有很高的芳香性和稳定性.  相似文献   

19.
The equilibrium geometries,energies,harmonic vibrational frequencies,and nucleus independent chemical shifts(NICS) of the new type sandwich structures [As4MAs4]n-(M = Fe,Co,Ni,Ru,Rh,Pd,Os,Ir and Pt;n = 0,1 or 2) are investigated at the B3LYP level.All the [As4MAs4]n-species adopt staggered(D4d) conformations as their stable structures and eclipsed(D4h) conformations as their transition states,and once the sandwich complexes are formed,the As42- square properties remain unchanged.The NICS calculation confirms that the complexes of Fe,Co,and Ni are aromatic with negative NICS values,and those of Ru,Rh,and Ir exhibit slight aromaticity,while those of Pd,Os,and Pt show slight antiaromaticity.  相似文献   

20.
Through one pot reaction of C60 with organocopper/magne-sium reagent ( p - MeQ H4 )2 CuMgBr or ( m - MeC6 H )2 -CuMgBr prepared from CuBr-Me2S and p-MeC6H4MgBr or m-MeC6H4MgBr and subsequent quenching with aqueous NH4Cl, two pentaarylated [60] fullerene derivatives (p-MeC6H4)5C60H (1) and (m-MeC6H4)5C60H (2) have been synthesized in 94% and 96% yields, respectively. While known compound 1 prepared via this improved method is unambiguously identified, new compound 2 is fully characterized by elemental analysis, IR, UV-vis, 1H NMR and 13C NMR spectroscopies. Additionally, electrochemical study shows that the two [60] fullerene derivatives 1 and 2 in dichloromethane solution display two sequential one-electron reductions which are shifted by about 0.4V towards more negative potential values with respect to free C60. Such remarkable cathodic shift is attributed to the multiple breakage of the double-bond conjugation within the fullerene core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号