首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用密度泛函B3LYP对有限长扶手椅形单壁碳纳米管(3,3),(4,4)和(5,5)吸附O原子的几何结构、电子属性、反应能和红外光谱进行了系统地理论研究,获得了一些有意义的结果,主要包括如下4个方面:(1)2个O原子吸附在管外壁垂直于管轴的C—C键形成开环的轮烯结构,吸附在管内壁形成环氧结构;(2)O原子吸附在管外壁要比吸附在管内壁具有较大的能隙和吸附反应能;(3)与单壁碳纳米管管外壁吸附1个O原子相比,2个O原子吸附在管外壁具有较大的吸附反应能;(4)B3LYP得到的C—O伸缩振动频率与实验一致.  相似文献   

2.
有限长椅型(5,5)碳纳米管吸附氟和氢的理论研究   总被引:2,自引:0,他引:2  
张明昕  章永凡  李奕  李俊 《结构化学》2003,22(4):447-453
使用半经验PM3方法, 对(5, 5)椅型单壁碳纳米管的H和F吸附做一系列计算, 模型采用含120C, 130C, 140C的两端开口的(5, 5)管, 吸附原子从2到30个。计算结果表明F与H有类似的吸附规律, 但是, 在各种吸附构型的稳定性上, F吸附比H吸附的差别较为显著。H, F的吸附排列在50 %覆盖度下更倾向于沿管轴的锯齿状连续排列, 而非垂直于管轴的环状排列, 这些吸附排列结构与各纳米管骨架模型前线轨道拓扑图存在对应关系。  相似文献   

3.
The chemical adsorption of H atoms on an (8,0) zigzag boron nitride nanotube is studied using the density functional theory with the supercell method. One to four H atoms per 32 B and 32 N are considered. The results show that H atoms prefer to adsorb on the top sites of adjacent B and N atoms to form an armchair chain along the tube axis. An even-odd oscillation behavior of the adsorption energy of H atoms on the tube is found, and the average adsorption energy of even H atoms is obviously bigger than that of odd H atoms. The results can be understood with the frontier orbital theory. Based on this adsorption behavior, several high-symmetric structures of H adsorbed boron nitride nanotubes with 50% and 100% coverages are studied. The pairs of lines' pattern with 50% coverage has the biggest average adsorption energy per H(2) among the chosen configurations, corresponding to approximately 4 wt % hydrogen storage.  相似文献   

4.
On the basis of density functional theory (DFT) methods, we study the magnetic properties and electronic structures of the armchair (4, 4) and zigzag (8, 0) single-wall SiC nanotubes with various vacancies and boron substitution. The calculation results indicate that a Si vacancy could induce the magnetic moments in both armchair (4, 4) and zigzag (8, 0) single-wall SiC nanotubes, which mainly arise from the p orbital of C atoms surrounding Si vacancy, leading to the ferromagnetic coupling. However, a C vacancy could only bring about the magnetic moment in armchair (4, 4) single-wall SiC nanotube, which mainly originates from the polarization of Si p electrons, leading to the antiferromagnetic coupling. In addition, for both kinds of single-wall SiC nanotubes, magnetic moments can be induced by a boron atom substituting for C atom. When two boron atoms locate nearest neighbored, both kinds of single-wall Si(C, B) nanotubes exhibit antiferromagnetic coupling.  相似文献   

5.
扶手椅型单壁碳纳米管生长机理的理论研究   总被引:1,自引:0,他引:1  
用Gaussian03程序中的AM1方法对扶手椅型单壁碳纳米管的生长机理进行了研究. 结果表明, 若碳纳米管生长的碳源是C2自由基, 则有一条反应途径可能是:C2自由基首先与碳纳米管的开口端形成一个中间体, 然后该中间体经过一个过渡状态, 形成产物;从(3, 3), (4, 4), (5, 5)到(6, 6), 其生长反应的活化能逐渐降低. 同时 研究发现, 活化能的高低与碳纳米管共轭程度的大小有关, 碳纳米管的共轭程度越大, 活化能越低;在靠近新形成的六元环的两侧, 碳纳米管可能优先继续生长.  相似文献   

6.
We have investigated adsorption of an O(2) molecule on a double-walled carbon nanotube (DWCNT) edge using density functional theory calculations. An O(2) molecule adsorbs exothermally without an adsorption barrier at open nanotube edges that are energetically favorable with a large adsorption energy of about -9 eV in most cases. Dissociative adsorption of an O(2) molecule induces various spontaneous lip-lip interactions via the bridged carbon atoms, generating the closed tube ends. This explains why the DWCNTs are chemically more stable than the single-walled nanotubes during observed field emission experiments. The field emission takes place via the localized states of the bridged carbon atoms, not via those of the adsorbed oxygen atoms particularly in the armchair nanotubes. We also find that some O(2) precursor states exist as a bridge between tube edges.  相似文献   

7.
Motivated by the central importance of charge-induced dimensional changes for carbon nanotube electromechanical actuators, we here predict changes in nanotube length and diameter as a function of charge injection for armchair and zigzag nanotubes having different diameters. Density functional theory with periodic boundary conditions is used, which we show provides results consistent with experimental observations for intercalated graphites. Strain-versus-charge relationships are predicted from dimensional changes calculated with a uniform background charge ("jellium") for representing the counterions. These jellium calculations are consistent with presented calculations that include specific counterions for intercalated graphite, showing that hybridization between the ions and the graphite sheets is unimportant. The charge-strain relationships calculated with the jellium approximation for graphite and isolated single-walled nanotubes are asymmetric with respect to the sign of charge transfer. The dependence of nanotube strain on charge approaches that for a graphite sheet for intermediate-sized metallic nanotubes and for larger diameter semiconducting nanotubes. However, the strain-charge curves strongly depend on nanotube type when the nanotube diameter is small. This reflects both the dependence of the frontier orbitals for the semiconducting nanotubes on the nanotube type and the pi-sigma mixing when the nanotube diameter is small.  相似文献   

8.
9.
A model for the adsorption of atomic hydrogen on the surfaces of single-walled zig-zag and armchair carbon nanotubes is constructed on the basis of the single-impurity periodic Anderson model. Features of the bands caused by the adsorption of hydrogen atoms in the structure of carbon nanotubes are studied. A reduction in the forbidden gap as a result of adsorption is revealed, and its dependence on the diameter of the semiconducting nanotubes is established. It is concluded that the model can be used to study the adsorption of other monovalent atoms on the surfaces of carbon particles.  相似文献   

10.
A 3D single-wall carbon nanotube can be viewed as a 2D graphite sheet rolled into a 3D cylinder. In the study of dispersion relations of carbon nanotubes, the consistent force parameters for 2D graphite sheets have to be modified to include the curvature effect. The present paper reports a series of calculations of phonon dispersion relations for single-wall carbon armchair, zigzag nanotube in which the curvature effect has been properly treated. The symmetry of crystal vibration mode at the centre of Brillouin zone is analyzed based on our numeric results and the structure symmetry of the nanotubes.  相似文献   

11.
12.
扶手椅型单壁碳纳米管的理论研究   总被引:2,自引:0,他引:2  
用半经验的AM1和PM3 方法,对不同长度的扶手椅型单壁碳纳米管(3,3)进行了理论研究.讨论了其几何结构、前线轨道的分布情况和红外光谱.结果表明:碳纳米管中的六边形不再像石墨中的六边形,而是发生了变形;从碳纳米管的中间到两端,各层碳原子在前线轨道中的轨道系数的平方和呈现规律性衰减的锯齿状变化;用AM1方法计算得扶手椅型单壁碳纳米管(3,3)的红外特征吸收波数约在1290~1645cm-1之间.  相似文献   

13.
Lu X  Tian F  Wang N  Zhang Q 《Organic letters》2002,4(24):4313-4315
[structure: see text] The viability of the Diels-Alder (DA) cycloaddition of conjugated dienes onto the sidewalls of single-wall carbon nanotubes is assessed by means of a two-layered ONIOM(B3LYP/6-31G:AM1) approach. Whereas the DA reaction of 1,3-butadiene on the sidewall of an armchair (5,5) nanotube is found to be unfavorable, the cycloaddition of quinodimethane is predicted to be viable due to the aromaticity stabilization at the corresponding transition states and products.  相似文献   

14.
The growth mechanism of armchair single-walled carbon nanotube was studied theoretically by AM1 method as implemented in Gaussian03 program. The following results were obtained. (1) Let C2 radicals be the carbon source for the growth of the carbon nanotube, then the most likely growth mechanism would be as follows. An intermediate is formed firstly by the direct addition of C2 radical to the open end of the carbon nanotube without an energy barrier, then via a transition state the reaction produces the product, i.e., C2 becomes the component of the hexagon of the nanotube. (2) From (3,3) to (6,6), the activation energy decreases (from 66.8 to 46.1 kJ·mol?1), whereas the conjugation of the nanotube increases. (3) The distribution of the frontier molecular orbitals indicates that the two edges of the newly formed hexagon maybe grow easily.  相似文献   

15.
The diffusivities of methane in single-walled carbon nanotubes (SWNTs) are investigated at various temperatures and pressures using classical molecular dynamics (MD) simulations complemented with grand canonical Monte Carlo (GCMC) simulations. The carbon atoms at the nanotubes are structured according to the (m, m) armchair arrangement and the interactions between each methane molecule and all atoms of the confining surface are explicitly considered. It is found that the parallel self-diffusion coefficient of methane in an infinitely long, defect-free SWNT decreases dramatically as the temperature falls, especially at subcritical temperatures and high loading of gas molecules when the adsorbed gas forms a solidlike structure. With the increase in pressure, the diffusion coefficient first declines rapidly and then exhibits a nonmonotonic behavior due to the layering transitions of the adsorbed gas molecules as seen in the equilibrium density profiles. At a subcritical temperature, the diffusion of methane in a fully loaded SWNT follows a solidlike behavior, and the value of the diffusion coefficient varies drastically with the nanotube diameter. At a supercritical temperature, however, the diffusion coefficient at high pressure reaches a plateau, with the limiting value essentially independent of the nanotube size. For SWNTs with the radius larger than approximately 2 nm, capillary condensation occurs when the temperature is sufficiently low, following the layer-by-layer adsorption of gas molecules on the nanotube surface. For SWNTs with a diameter less than about 2 nm, no condensation is observed because the system becomes essentially one-dimensional.  相似文献   

16.
Recently there has been lot of interest in the development of hydrogen storage in various systems for the large-scale application of fuel cells, mobiles and for automotive uses. Hectic materials research is going on throughout the world with various adsorption mechanisms to increase the storage capacity. It was observed that physisorption proves to be an effective way for this purpose. Some of the materials in this race include graphite, zeolite, carbon fibers and nanotubes. Among all these, the versatile material carbon nanotube (CNT) has a number of favorable points like porous nature, high surface area, hollowness, high stability and light weight, which facilitate the hydrogen adsorption in both outer and inner portions. In this work we have considered armchair (5,5), zig zag (10,0) and chiral tubes (8,2) and (6,4) with and without structural defects to study the physisorption of hydrogen on the surface of carbon nanotubes using DFT calculations. For two different H2 configurations, adsorption binding energies are estimated both for defect free and defected carbon nanotubes. We could observe larger adsorption energies for the configuration in which the hydrogen molecular axis perpendicular to the hexagonal carbon ring than for parallel to C–C bond configuration corresponding to the defect free nanotubes. For defected tubes the adsorption energies are calculated for various configurations such as molecular axis perpendicular to a defect site octagon and parallel to C–C bond of octagon and another case where the axis perpendicular to hexagon in defected tube. The adsorption binding energy values are compared with defect free case. The results are discussed in detail for hydrogen storage applications.  相似文献   

17.
利用分子动力学方法研究了(5,5)扶手椅型和(10,10)锯齿型纳米碳管在水中受拉伸负载下的机械性质.通过计算纳米碳管中氧和氢原子的局部密度分布研究了限制效应.结果表明,碳管在水中的杨式系数与在真空下相同,而碳管在水中的拉伸应力小于在真空中的.  相似文献   

18.
The structural and electronic characteristics of fully hydrogenated armchair and zigzag carbon nanotubes have been determined by quantum chemical methods. With use of line group symmetries, the structures of nanotubes up to 10 nm in diameter could be optimized by periodic B3LYP calculations. “In–out” isomerism is shown to significantly stabilize perhydrogenated carbon nanotubes, the energetically most favorable structures being those with 1/3–1/2 of the carbon atoms endo-hydrogenated. In favored nanotubes the ratio of endo- to exo-hydrogens is 1:1, the stabilities increasing as a function of the diameter of the nanotube. The calculated band gaps indicate that the perhydrogenated carbon nanotubes are insulators.  相似文献   

19.
采用密度泛函理论研究了H2在碱金属(M=Li, K)掺杂的扶手椅型单壁碳纳米管上的吸附. 对于碱金属管内掺杂, 模拟了4种氢吸附构型; 对于管外掺杂, 考虑了两种吸附结构, 同时还考虑了两种不同的掺杂浓度. 所有吸附模型都进行了全优化. 计算结果表明, 碱金属掺杂后, 碱金属与碳纳米管之间发生电子授受作用使得碱金属带正电荷, 对于金属Li, 管内掺杂更有利于电子向碳纳米管转移; 与管内掺杂相比, Li原子的管外掺杂更有利于H2分子吸附. 碱金属管外掺杂的碳纳米管吸附H2的最稳定结构, 存在碱金属原子与H2分子的配位作用.  相似文献   

20.
Semiempirical and density functional electronic structure theory methods were used to study SWNT-X--R bond strengths, where the single-walled carbon nanotube (SWNT) had an armchair or zigzag structure, the link heteroatom X was O, N(H), or S and the hydrocarbon chain R was CH(2)CH(3), CH(OH)CH(3), CHCH(2), or CH(CF(3))CH(3). In all systems the hydrocarbon was bonded to the end of the nanotube. The SWNT-X--R bond (that is, the bond joining the link atom to the hydrocarbon) is more than 0.4 eV stronger for armchair than for zigzag nanotubes with the same diameters, irrespective of whether O, N, or S are used as link atoms or whether OH, C==C, or CF(3) groups are present in the hydrocarbon chain. This raises the possibility for selective manipulation of armchair/zigzag nanotubes using a variety of link atoms and hydrocarbon structures. The SWNT-O--CH(CF(3))CH(3) bond is weaker than the SWNT-O--CH(2)CH(3) bond (for both armchair and zigzag nanotubes), while inclusion of a double bond in the ethyl chain increases the bond strengths. Also, SWNT-S--CH(2)CH(3) and SWNT-N(H)--CH(2)CH(3) bonds are stronger than SWNT-O--CH(2)CH(3) bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号