首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the femtosecond laser micromachining of photo-induced embedded diffraction grating in flexible Poly (Dimethly Siloxane) (PDMS) plates using a high-intensity femtosecond (130 fs) Ti: sapphire laser (λp = 800 nm). The refractive index modifications with diameters ranging from 2 μm to 5 μm were photo-induced after the irradiation with peak intensities of more than 1 × 1011 W/cm2. The graded refractive index profile was fabricated to be a symmetric around from the center of the point at which femtosecond laser was focused. The maximum refractive index change (Δn) was estimated to be 2 × 10−3. By the X-Y-Z scanning of sample, the embedded diffraction grating in PDMS plate was fabricated successfully using a femtosecond laser.  相似文献   

2.
《Optics Communications》2003,220(4-6):401-412
We used generalised Lorenz–Mie scattering theory (GLMT) to compare submicron-sized particle optical trapping in a single focused beam and a standing wave. We focus especially on the study of maximal axial trapping force, minimal laser power necessary for confinement, axial trap position, and axial trap stiffness in dependency on trapped sphere radius, refractive index, and Gaussian beam waist size. In the single beam trap (SBT), the range of refractive indices which enable stable trapping depends strongly on the beam waist size (it grows with decreasing waist). On the contrary to the SBT, there are certain sphere sizes (non-trapping radii) that disable sphere confinement in standing wave trap (SWT) for arbitrary value of refractive index. For other sphere radii we show that the SWT enables confinement of high refractive index particle in wider laser beams and provides axial trap stiffness and maximal axial trapping force at least by two orders and one order bigger than in SBT, respectively.  相似文献   

3.
Nanosecond (∼100 ns) pulsed (10 Hz) Nd:YAG laser operating at the wavelength (λ) of 1064 nm with pulse energies of 0.16-1.24 mJ/cm2 has irradiated 10Sm2O3·40BaO·50B2O3 glass. It is demonstrated for the first time that the structural modification resulting the large decease (∼3.5%) in the refractive index is induced by the irradiation of YAG laser with λ=1064 nm. The lines with refractive index changes are written in the deep inside of 100-1000 μm depths by scanning laser. The line width is 1-13 μm, depending on laser pulse energy and focused beam position. It is proposed that the samarium atom heat processing is a novel technique for inducing structural modification (refractive index change) in the deep interior of glass.  相似文献   

4.
Nanometer-scale Al particles are fabricated and are embedded in a GaAs matrix using molecular beam epitaxial technique. The Al particle is self-assembled on GaAs by supplying an Al molecular beam. The average particle size is found to be 25 nm. The density is 7 × 1010 cm−2 when Al of 6.2 × 1015 atoms/cm2 is supplied on (1 0 0)GaAs at a substrate temperature of 300 °C. Clear hysteresis and plateaus in capacitance-voltage (C-V) curves are found in an Al-embedded sample, whereas monotonic increase of capacitance is obtained in a reference sample having an AlAs layer instead of Al. This difference results from trapping of electrons by the Al particles, suggesting that the particles have metallic character.  相似文献   

5.
This study investigates the nonlinear optical properties of azo-dye-doped nematic and polymer-dispersed liquid crystal (ADDPDLC) films with nano-sized LC droplets using the Z-scan technique, which is a simple but powerful technique for measuring the optical Kerr constants of materials. The results indicate that the optical Kerr constant (n2) of the azo-dye-doped nematic LC (ADDLC) film is large because of the photoisomerization effect and the thermal effect. Therefore, the optical Kerr constant of this material can be modulated by varying the temperature of the sample and the direction of polarization of incident laser. The range of n2 modulated is from −5.26 × 10−3 to 1.62 × 10−3 cm2/W. The optical Kerr constants of ADDPDLC films at various temperatures are also measured. The experimental results reveal that liquid crystals in the ADDPDLC film strengthen the nonlinearity. The n2 of the ADDPDLC film is maximal at ∼35 °C, because of the decrease in the clearing temperature of the ADDPDLC films. The clearing temperatures of the liquid crystals (E7), and the ADDPDLC film used in this work were found to be 61 °C and 43 °C, respectively.  相似文献   

6.
The laser ablation of Ge and GaAs targets placed in water and ethanol was carried out using the fundamental radiation of nanosecond Nd:YLF laser. The results of preparation and the optical and nonlinear optical characterization of the Ge and GaAs nanoparticle suspensions are presented. The considerable shift of the band gap energy of the nanoparticles compared to the bulk semiconductors was observed. The distribution of nanoparticle sizes was estimated in the range of 1.5-10 nm on the basis of the TEM and spectral measurements. The nonlinear refractive indices and nonlinear absorption coefficients of Ge and GaAs nanoparticles were defined by the z-scan technique using second harmonic radiation of picosecond Nd:YAG laser (λ = 532 nm).  相似文献   

7.
The nonlinear optical properties and photoinduced anisotropy of an azobenzene ionic liquid-crystalline polymer were investigated. The single beam Z-scan measurement showed the polymer film possessed a value of nonlinear refractive index n2 = −1.07 × 10−9 cm2/W under a picosecond 532 nm excitation. Photoinduced anisotropy in the polymer was studied through dichroism and photoinduced birefringence. A photoinduced birefringence value Δn ∼ 10−2 was achieved in the polymer film. The mechanism for the nonlinear optical response and the physical process of photoinduced anisotropy in the polymer were discussed.  相似文献   

8.
Lijuan Ge  Jielong Shi  Qian Kong 《Optik》2011,122(9):749-753
Both azimuthally and radially polarized vortex solitons are investigated to be able to exist in highly nonlocal nonlinear media. We get exactly analytical solutions of azimuthally polarized vortex solitons with only polarization singularities and radially polarized vortex solitons with both phase singularities and polarization singularities. Both azimuthally and radially polarized vortex solitons can exist in nonlocal self-focusing nonlinear media with proper modulation of the beam power and the degree of nonlocality. Contrary to those of radially polarized counterparts in local Kerr media, the topological charge can be any integer. When the topological charge m ≠ 0, both phase singularities and polarization singularities work. When m = 0, the polarization singularities work. Azimuthally polarized vortex solitons with polarization singularities corresponds to the linearly polarized vortex solitons with single charge. Our results show that polarization singularities work the same way as phase singularities in some sense.  相似文献   

9.
Periodic surface nanostructures are observed on Ti3+:Al2O3 single crystals that have been irradiated by a single focused beam from a femtosecond pulsed laser (wavelength: 800 nm; pulse duration: 130 and 152 fs). Atomic force microscopy images of single-ablated zones and modified structures created by fixing and translating samples through the focal region of a linearly polarized laser beam reveal self-organized periodic surface nanostructures (ripples) with a subwavelength spacing, which are oriented perpendicular to the electric-field vector of the laser beam. The period of the subwavelength ripples obtained by linearly polarized laser irradiation varies from ∼λ/5 to 2λ/5 (λ: incident laser wavelength) depending on the laser pulse energy. This phenomenon can be explained by assuming that the incident light field interferes with the electric field of electron plasma waves propagating inside the material; this interference periodically modulates the electron plasma density and modifies the surface ablation. In addition, for the first time, we observe screw-shaped nanostructures in the focal spot of circularly polarized beam irradiation. The morphology of these nanostructures appears to reflect the circular polarization of the laser light.  相似文献   

10.
The optical trapping characteristics of highly focused higher-order radially polarized beams (R-TEMp1*) acting on a Rayleigh particle are studied theoretically. Numerical results show that as the order p of beam increases and the numerical aperture NAo of the objective decreases, the axial trap distance increases but the trap depth and maximum restoring force decreases. In a limit of NAo = 1, three higher-order R-TEMp1* beams of p = 1, 2, 3, like the fundamental lowest-order radially polarized beam of p = 0, can three-dimensionally trap a particle to the focus but the axial trap stiffness decreases with the increase of p. When NAo = 0.95, the focus is still a stable trap point for the two beams of p = 0 and 1 but it becomes an unstable trap point for the two beams of p = 2 and 3. The trap stability is also discussed for higher-order radially polarized beam illumination.  相似文献   

11.
Investigation of the process of nanohole formation on silicon surface mediated with near electromagnetic field enhancement in vicinity of gold particles is described. Gold nanospheres with diameters of 40, 80 and 200 nm are used. Irradiation of the samples with laser pulse at fluences below the ablation threshold for native Si surface, results in a nanosized surface modification. The nanostructure formation is investigated for the fundamental (λ = 800 nm, 100 fs) and the second harmonic (λ = 400 nm, 250 fs) of the laser radiation generated by ultrashort Ti:sapphire laser system. The near electric field distribution is analyzed by an Finite Difference Time Domain (FDTD) simulation code. The properties of the produced morphological changes on the Si surface are found to depend strongly on the polarization and the wavelength of the laser irradiation. When the laser pulse is linearly polarized the produced nanohole shape is elongated in the E-direction of the polarization. The shape of the hole becomes symmetrical when the laser radiation is circularly polarized. The size of the ablated holes depends on the size of the gold particles, as the smallest holes are produced with the smallest particles. The variation of the laser fluence and the particle size gives possibility of fabricating structures with lateral dimensions ranging from 200 nm to below 40 nm. Explanation of the obtained results is given on the basis simulations of the near field properties using FDTD model and Mie's theory.  相似文献   

12.
The generation of watt-level cw narrow-linewidth sources at specific deep-UV wavelengths corresponding to atomic cooling transitions usually employs external cavity-enhanced second-harmonic generation (SHG) of moderate-power visible lasers in birefringent materials. Among the oxo-borate materials, barium borate (β-BaB2O4 or BBO) combines the highest UV band edge and largest nonlinearity but suffers from large walk-off angles that limits the nonlinear interaction length. Alternative quasi-phase-matched (QPM) ferroelectrics are hardly suited for cavity-enhanced operation due to their much larger UV absorption and associated photo-refractive and thermal lensing effects, in addition to the difficult fabrication of fine-pitch domain gratings for short UV coherence lengths. In this work, we investigate an alternative approach to cw deep-UV generation by employing the low-loss BBO in a monolithic walk-off compensating structure [J.-J. Zondy, Ch. Bonnin, D. Lupinski, J. Opt. Soc. Am. B 20 (2003) 1675] to simultaneously enhance the effective nonlinear coefficient while minimizing the UV beam ellipticity under tight focusing. As a preliminary step to cavity-enhanced operation, and in order to apprehend the design difficulties stemming from the extremely low acceptance angle of BBO, we investigate and analyze the single-pass performance of a Lc = 8 mm monolithic walk-off compensating structure made of 2 optically-contacted BBO plates cut for type-I critically phase-matched SHG of a cw λ = 570.4 nm dye laser. As compared with a bulk crystal of identical length, a sharp UV efficiency enhancement factor of 1.65 has been evidenced with the tandem structure, but at ∼−1 nm from the targeted fundamental wavelength, highlighting the sensitivity of this technique when applied to a highly birefringent material such as BBO. Solutions to angle cut residual errors are identified so as to match accurately more complex periodic-tandem structure performance to any target UV wavelength, opening the prospect for high-power, good beam quality deep-UV cw laser sources for atom cooling and trapping.  相似文献   

13.
We propose a method to produce diffraction-free thin and hollow beams. The method is based on Laguerre-Gaussian (LG) beams incident on a large open-angle axicon. We use the vector diffraction integrals and stationary phase method to deduce a simple and analytical formula of the propagating field of the linearly polarized LG beams through an axicon. The numerical results show that the hollow beams of whose diameter is in the order of the wavelength can be obtained by using the axicon with the refractive index n = 2 and the open angle α = 25°. These diffraction-free thin and hollow beams may be very useful to accurately trap and manipulate atoms. However, when the open angle is over large, the conversion efficiency from the LG beam to the diffraction-free hollow beam will decrease obviously.  相似文献   

14.
The results of numerical modelling of cascaded compression of the first and second Stokes pulses during regenerative regime of the forward transient stimulated Raman amplification are presented for the case when the walk-off length of the first Stokes pulse due to group velocity mismatch is shorter than the length of the nonlinear medium. The influence of the initial amplitudes of the seed first Stokes pulses, its durations and its time delay with respect to the pump pulse, the Kerr nonlinearity of the medium on the conversion efficiency, duration and propagation factor M2 of the first and second Stokes pulse are studied. It is demonstrated that for the pump pulse duration of 1 ps the duration of the compressed second Stokes pulses in a KGW crystal near the beam axis may be approximately 14 times shorter than the pump pulse duration. It is shown that the propagation factor of the compressed pulses increases significantly because of complex spatial-temporal dynamics of compression and the influence of Kerr nonlinearity of Raman medium.  相似文献   

15.
Using a picosecond pump and probe time-resolved technique we evidence a single pump pulse photo-induced magnetic ordering in a Mn-doped semiconductor magneto-photonic microcavity operating in the strong coupling regime at room temperature. This nanosecond duration magnetization is attributed to a magnetic ordering of the Mn-impurities mediated through photo-generated holes and enhanced through the confinement. It is distinct from the preceding short lived photo-induced spin orientation of carriers also evidenced by our technique for circularly polarized pump beams. The photo-generated magnetic flux density amounts to a 1 kG for beam fluences of few tens μJ cm−2 and effective Mn concentrations of 5 nm−3; large photo-induced magneto-optic Kerr rotations are also evidenced.  相似文献   

16.
Subwavelength ripples (<λ/4) are obtained by scanning a tightly focused beam (∼1 μm) of femtosecond laser radiation (λ = 800 nm, tp = 100 fs) over the surface of either bulk fused silica and silicon and Er:BaTiO3. The ripple pattern extends coherently over many overlapping laser pulses parallel and perpendicular to the polarisation. Investigated are the dependence of the ripple spacing on the spacing of successive pulses, the direction of polarisation and the material. The evolution of the ripples is investigated by applying pulse bursts with N = 1 to 20 pulses. The conditions under which these phenomena occur are specified, and some possible mechanisms of ripple growth are discussed. Potential applications are presented.  相似文献   

17.
We study theoretically routes toward the most confined dark channel that can be obtained using high angular aperture focusing. One possible solution is to use a radially polarized beam combined with an optical singularity. Another possibility is to use an azimuthally polarized light beam combined with an annular aperture or a phase filter. Our results suggest that a focal hole of full-width at half maximum of approximately 0.3λ0/NA is achievable, where λ0 is the wavelength in vacuum and NA is the numerical aperture of the focusing system. Finally, we show that by letting a phase-shifted plane wave and a focused scalar wave interfere only one point in the focal plane will exhibit zero intensity. Advantages and disadvantages of the schemes are discussed.  相似文献   

18.
In laser applications, resolutions beyond the diffraction limit can be obtained with a thin film of strong optical nonlinear effect. The optical index of the silicon thin film is modified with the incident laser beam as a function of the local field intensity n(r)E2(r). For ultrathin films of thickness d?λ, the transmitted light through the film forms a profile of annular rings. Therefore, the device can be related to the realization of super-resolution with annular pupils. Theoretical analysis shows that the focused light spot appears significantly reduced in comparison with the diffraction limit that is determined by the laser wavelength and the numerical aperture of the converging lens. Analysis on the additional optical transfer function due to the thin film confirms that the resolving power is improved in the high spatial frequency region.  相似文献   

19.
Chunhua Zeng  Ailing Gong  Yafang Tian 《Physica A》2010,389(10):1971-1977
Transport of an inertial Brownian motor moving in an asymmetric periodic potential driven by an external force and correlated noises is investigated. Using the numerical algorithm, the asymptotic mean velocity (AMV) for characterizing directed transport is obtained. The effects of the external driving force f and the correlation λ between the two noises on the AMV are discussed. The results manifest: (1) the external driving force and the correlation between the two noises can lead to the phenomena like current reversal. (2) The competitions among the external driving force and the correlation between the two noises are necessary for current reversal, i.e., fλ>0. (3) Different directions of transport are found for different masses of the Brownian particles under the condition fλ>0. Therefore a theoretical study is suggested for separating Brownian particles according to their different masses in the ratchet system.  相似文献   

20.
Anatase phase TiO2 films have been grown on fused silica substrate by pulsed laser deposition technique at substrate temperature of 750 °C under the oxygen pressure of 5 Pa. From the transmission spectra, the optical band gap and linear refractive index of the TiO2 films were determined. The third-order optical nonlinearities of the films were measured by Z-scan method using a femtosecond laser (50 fs) at the wavelength of 800 nm. The real and imaginary parts of third-order nonlinear susceptibility χ(3) were determined to be −7.1 × 10−11esu and −4.42 × 10−12esu, respectively. The figure of merit, T, defined by T=βλ/n2, was calculated to be 0.8, which meets the requirement of all-optical switching devices. The results show that the anatase TiO2 films have great potential applications for nonlinear optical devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号