首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
A molecularly imprinted polymer (MIP) for the specific retention of neopterin has been developed. A set of 6 polymers was prepared by radical polymerization under different experimental condition using methacrylic acid as functional monomer and ethylene glycol dimethacrylate as crosslinker, with the aim to understand their influence on the efficiency of the MIP. The performance of each MIP was tested in batch experiments via their binding capacity. The MIP prepared in the presence of nickel ions in dimethylsulfoxide-acetonitrile mixture (P4) exhibited the highest binding capacity for neopterin (260 μmol per gram of polymer). A selectivity study with two other pteridines demonstrated the polymer P4 also to possess the best selectivity.
Figure
A molecularly imprinted polymer for the specific retention of neopterin was developed. A set of 6 polymers was prepared under different experimental condition. The performance of each MIP was tested through their binding capacity. The MIP P4 prepared in the presence of nickel ions exhibited the highest binding capacity  相似文献   

2.
A method based on reverse atom transfer radical polymerization (R-ATRP) and molecular crowding has been used for design and synthesis of monolithic molecularly imprinted polymers (MIPs) capable of recognizing ibuprofen (IBU). 4-Vinylpyridine (4-VP) was used as the functional monomer, and ethylene glycol dimethacrylate (EDMA) was the crosslinking monomer. Azobisisobutyronitrile (AIBN)–CuCl2N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA) was used as the initiating system. Compared with conventional radical polymerization-based IBU-MIPs, the imprinting effects of the obtained IBU-MIPs was enhanced, suggesting the merit of combination of reverse ATRP and molecular crowding. In addition, it was found that the polymerization time of the molecularly imprinted monolithic column, the amount of template, the degree of crosslinking, and the composition of mobile phase greatly affected retention of the template and the performance of molecular recognition .
Figure
Schematic representation of molecular imprinting under molecular crowding conditions in the presence of R-ATRP  相似文献   

3.
A new chiral stationary phase based on molecularly imprinted polymers (MIP) was prepared in ionic liquid by use of the metal pivot concept. Imprinted monoliths were synthesized by use of a mixture of R-mandelic acid (template), 4-vinylpyridine, ethylene glycol dimethacrylate, and several metal ions as pivot between the template and functional monomer. A ternary mixture of dimethyl sulfoxide–dimethylformamide–[BMIM]BF4 containing metal ions was used as the porogenic system. Separation of the enantiomers of rac-mandelic acid was successfully achieved on the MIP thus obtained, with resolution of 1.87, whereas no enantiomer separation was observed on the imprinted monolithic column in the absence of metal ions. The effects of polymerization conditions, including the nature of the metal ion and the ratios of template to metal ions and template to functional monomer, on the chiral separation of mandelic acid were investigated. The results reveal that use of metal ions as a pivot, in combination with ionic liquid, is an effective method for preparation of a highly efficient MIP stationary phase for chiral separation.
Figure
A new chiral stationary phase based on molecularly imprinted polymers (MIP) was prepared in ionic liquid by use of the metal pivot concept  相似文献   

4.
We have prepared a hydrophilic molecularly imprinted polymer (MIP) for the hydrophobic compound bisphenol A (BPA) in aqueous solution using 3-acrylamido-N,N,N-trimethylpropan-1-aminium chloride (AMTC) as the functional monomer. Under redox-polymerization conditions, BPA forms an ion-pair with AMTC, which was confirmed by 1H-NMR titration. The imprinting effect in aqueous solution was evaluated by comparison of this material with the corresponding non-imprinted polymer (NIP) and with a control polymer (CP) bearing no AMTC. The MIP showed the highest activity among the three polymers, and the imprinting factors as calculated from the amount of BPA bound to the MIP divided by the amounts bound to NIP and CP, respectively, are 1.8 and 6.0. The MIP was selective for BPA in aqueous solution, while structurally related compounds are not recognized. Such a selectivity for a hydrophobic compound is rarely observed in aqueous medium because non-specific binding of BPA inevitably leads to hydrophobic interaction.
Figure
A hydrophilic molecularly imprinted polymer (MIP) for bisphenol A (BPA) recognition was prepared in aqueous solution. The obtained MIP (BPA-MIP) showed good selectivity under aqueous conditions  相似文献   

5.
Several molecularly imprinted polymers (MIPs) for the retention of 4,6-dimethyldibenzothiophene (4,6-DMDBT) were prepared. The first was a polymer prepared non-covalently with methacrylic acid and ethylene glycol dimethacrylate polymerized in the presence of 4,6-DMDBT. After extraction of 4,6-DMDBT, the selectivity of the imprinted polymer was evaluated by HPLC and compared to a non-imprinted control polymer prepared without 4,6-DMDBT. The imprinted polymer retained 4,6-DMDBT slightly longer than the control polymer. The second polymer was prepared using nickel (II)-methacryloylhistidinedihydrate monomer which was combined with 4,6-DMDBT, and polymerized with ethylene glycol dimethacrylate. This is a novel use of this monomer for retention of sulfur-containing organic compounds. Selectivity for 4,6-DMDBT was much greater in this polymer compared to the first, and retention in acetonitrile was more than three times greater on the imprinted polymer compared to a control polymer. Results indicate the potential use of this novel MIP for the removal of organosulfur compounds from fuel.
Figure
Chromatograms of a solution of acetone and 10 ppm 4,6-DMDBT in acetonitrile, evaluated on a non-imprinted control (dashed line) and imprinted test (solid line) polymers. Peak at 1.5 min on control column are acetone and 4,6-DMDBT. Peak at 1.5 min on test column is acetone and at 2.5 min is 4,6-DMDBT.  相似文献   

6.
We report on a voltammetric sensor for bisphenol A (BPA) that is based on an acetylene-black paste electrode modified with a chitosan film molecularly imprinted for BPA. The sensor responds linearly to BPA in the 80 nM to 10 μM concentration range, and the detection limit is 60 nM (at an S/N of 3). The use of a molecular imprint provides an efficient way for eliminating interferences from potentially interfering substances. The high sensitivity, selectivity and stability of the sensor demonstrate its practical application for the determination of BPA in plastic samples.
Figure
An acetylene black paste electrode modified with molecularly imprinted chitosan film was used as a novel voltammetric sensor for bisphenol A determination. The experimental results demonstrated that the combination of acetylene black with molecularly imprinted technique offered an attractive route to enhance the sensitivity and selectivity of the sensor.  相似文献   

7.
We describe a molecularly imprinted electrochemical sensor for selective and sensitive determination of β2-agonists. It is making use of a combination of single-wall carbon nanotubes (SWNTs) with a molecularly imprinted sol–gel. The SWNTs were introduced in order to enhance electron transport and sensitivity. The imprinted sol–gel film with its specific binding sites acts as a selective recognition element and as a preconcentrator for β2-agonists. The morphology of the imprinted film was characterized by scanning electron microscopy. The optimized sensor displays high sensitivity and excellent selectivity for the β2-agonists as shown for their determination in human serum samples.
Figure
A molecularly imprinted electrochemical sensor was constructed for selective and sensitive determination of β2-agonists. The optimized sensor displays high sensitivity and excellent selectivity for the β2-agonists as shown for their determination in human serum samples.  相似文献   

8.
9.
Biotin-specific synthetic receptors prepared using molecular imprinting   总被引:1,自引:0,他引:1  
The composition of new molecularly imprinted polymers (MIPs) specific for biotin was optimised using molecular modelling software. Three functional monomers: methacrylic acid (MAA), 2-(trifluoromethyl)acrylic acid (TFAA) and 2-acrylamido-2-methylpropanesulfonic acid (AMPSA), which demonstrated the highest binding scores with biotin, were tested on their ability to generate specific binding sites. The imprinted polymers were photografted to the surface of polystyrene microspheres in water. The affinity of the synthetic “receptor” sites was evaluated in binding experiments using horseradish peroxidase-labelled biotin. Good correlation was found between the modelling results and the performance of the materials in the template re-binding study. The dissociation constants for all MIPs were 1.4-16.8 nM, which is sufficient for most analytical applications where biotin is used as a label.  相似文献   

10.
We have developed a rapid, selective and efficient method for dispersive solid-phase microextraction (DSPME) using microbeads of a molecularly imprinted polymer (MIP). It enables the pre-concentration of sulfamethazine and sample clean-up prior to capillary electrophoresis with UV detection. The microbeads were synthesized via precipitation polymerization using sulfamethazine, methacrylic acid and ethylene glycol dimethacrylate (EGDMA) as the template molecule, the functional monomer and the cross-linking monomer, respectively. Characterization by SEM displayed the high uniformity and dispersibility of the MIP microbeads. The adsorption and desorption of sulfamethazine and the parameters for CE were optimized to result in a limit of detection of 1.1?μg?L?1, which is 373-fold lower than that of direct CE detection. The equilibration time of extraction was reduced to 5?min, and the selectivity of the microbeads was significantly improved compared to the non-imprinted polymer. The method was successfully applied to the determination of trace sulfamethazine in several milk samples, with recoveries in the range of 89?% to 110?%.
Figure
A novel, rapid, selective and efficient dispersive solid-phase microextraction approach using molecularly imprinted polymer microbeads was developed for pre-concentration of sulfamethazine and sample clean-up prior to capillary electrophoresis detection.  相似文献   

11.
We have prepared molecularly imprinted beads with molecular recognition capability for target molecules containing the penicillanic acid substructure. They were prepared by (a) grafting mesoporous silica beads with 6-aminopenicillanic acid as the mimic template, (b) filling the pores with a polymerized mixture of methacrylic acid and trimethylolpropane trimethacrylate, and (c) removing the silica support with ammonium fluoride. The resulting imprinted beads showed good molecular recognition capability for various penicillanic species, while antibiotics such as cephalosporins or chloramphenicol were poorly recognized. The imprinted beads were used to extract penicillin V, nafcillin, oxacillin, cloxacillin and dicloxacillin from skimmed and deproteinized milk in the concentration range of 5–100 μg·L?1. The extracts were then analyzed by micellar electrokinetic chromatography by applying reverse polarity staking as an in-capillary preconcentration step, and this resulted in a fast and affordable method within the MRL levels, characterized by minimal pretreatment steps and recoveries of 64–90 %.
Figure
Penicillanic acid-imprinted beads prepared in preformed porous silica by an imprinting & etching approach show selectivity towards β-lactams antibiotics. Molecularly imprinted solid phase extraction/micellar electrokinetic chromatography coupled with in-capillary preconcentration resulted in a fast and affordable method for penicillins in milk at MRL levels.  相似文献   

12.
In this work, we will present a novel approach for the detection of small molecules with molecularly imprinted polymer (MIP)-type receptors. This heat-transfer method (HTM) is based on the change in heat-transfer resistance imposed upon binding of target molecules to the MIP nanocavities. Simultaneously with that technique, the impedance is measured to validate the results. For proof-of-principle purposes, aluminum electrodes are functionalized with MIP particles, and l-nicotine measurements are performed in phosphate-buffered saline solutions. To determine if this could be extended to other templates, histamine and serotonin samples in buffer solutions are also studied. The developed sensor platform is proven to be specific for a variety of target molecules, which is in agreement with impedance spectroscopy reference tests. In addition, detection limits in the nanomolar range could be achieved, which is well within the physiologically relevant concentration regime. These limits are comparable to impedance spectroscopy, which is considered one of the state-of-the-art techniques for the analysis of small molecules with MIPs. As a first demonstration of the applicability in biological samples, measurements are performed on saliva samples spiked with l-nicotine. In summary, the combination of MIPs with HTM as a novel readout technique enables fast and low-cost measurements in buffer solutions with the possibility of extending to biological samples.
Figure
Heat-transfer based detection with molecularly imprinted polymers  相似文献   

13.
The food antioxidant quercetin was used as a template in an ultrathin molecularly imprinted polymer (MIP) film prepared by photopolymerization. Indium tin oxide (ITO) plates were electrografted with aryl layers via a diazonium salt precursor bearing two terminal hydroxyethyl groups. The latter act as hydrogen donors for the photosensitizer isopropylthioxanthone and enabled the preparation of MIP grafts through radical photopolymerization of methacrylic acid (the functional monomer) and ethylene glycol dimethacrylate (the crosslinker) in the presence of quercetin (the template) on the ITO. The template was extracted, and the remaining ITO electrode used for the amperometric determination of quercetin at a working potential of 0.26 V (vs. SCE). The analytical range is from 5.10?8 to 10?4 mol L?1, and the detection limit is 5.10?8 mol L?1.
Figure
This work describes the grafting of a molecularly imprinted polymer (MIP) film by combining diazonium surface chemistry and surface-initiated photopolymerization. The MIP grafts specifically and selectively recognize quercetin in pure solution in THF and in real green tea infusion.  相似文献   

14.
Frontal polymerization was successfully applied, for the first time, to obtain molecularly imprinted polymers (MIPs). The method provides a solvent-free polymerization mode, and the reaction can be completed in 30 min. By this approach, MIPs were synthesized using a mixture of levofloxacin (template), methacrylic acid, and divinylbenzene. The effect of template concentration and the amount of comonomer on the imprinting effect of the resulting MIPs was investigated. The textural and morphological parameters of the MIP particles were also characterized by mercury intrusion porosimetry, nitrogen adsorption isotherms, and scanning electron microscopy, providing evidence concerning median pore diameter, pore volumes, and pore size distributions. The levofloxacin-imprinted polymer formed in frontal polymerization mode showed high selectivity, with an imprinting factor of 5.78. The results suggest that frontal polymerization provides an alternative means to prepare MIPs that are difficult to synthesize and may open up new perspectives in the field of MIPs.
Figure
?  相似文献   

15.
A monodisperse molecularly imprinted polymer (MIP) for curcumin was first prepared by precipitation polymerization using methacrylamide (MAM) and 4-vinylpyridine as functional co-monomers, divinylbenzene as a crosslinker, and a mixture of acetonitrile and toluene as a porogen. The use of MAM as the co-monomer resulted in the formation of a monodisperse MIP and non-imprinted polymer (NIP). MIP and NIP, respectively, were monodispersed with a narrow particle size distribution (3.3?±?0.09 and 3.5?±?0.10 μm). In addition to shape recognition, hydrophobic and hydrogen-bonding interactions affected the retention and molecular-recognition of curcumin on the MIP. The MIP for curcumin could extract curcuminoids (curcumin, demethoxycurcumin, and bisdemethoxycurcumin) in Curcuma longa L.
Figure
MIPs prepared with 4-VPY (left hand) and 4-VPY and MAM (right hand) as the functional monomers were polydispersed and monodispersed, respectively  相似文献   

16.
An application of plasma-induced grafting of polyethylene membranes with a thin layer of molecularly imprinted polymer (MIP) was presented. High-density polyethylene (HDPE) membranes, “Vyon,” were used as a substrate for plasma grafting modification. The herbicide atrazine, one of the most popular targets of the molecular imprinting, was chosen as a template. The parameters of the plasma treatment were optimized in order to achieve a good balance between polymerization and ablation processes. Modified HDPE membranes were characterized, and the presence of the grafted polymeric layer was confirmed based on the observed weight gain, pore size measurements, and infrared spectrometry. Since there was no significant change in the porosity of the modified membranes, it was assumed that only a thin layer of the polymer was introduced on the surface. The experiments on the re-binding of the template atrazine to the membranes modified with MIP and blank polymers were performed. HDPE membranes which were grafted with polymer using continuous plasma polymerization demonstrated the best result which was expressed in an imprinted factor equal to 3, suggesting that molecular imprinting was successfully achieved.
Figure
Atrazine and simazine adsorption by untreated HDPE membranes and membranes plasmagrafted with molecular imprinted polymer  相似文献   

17.
We present hybrid films consisting of a composite prepared from polystyrene (PS) and titanium dioxide (titania; TiO2) and molecularly imprinted with 1-pyrenebutyric acid (PBA). The interaction of PBA with the polymer is shown to occur via binding of the carboxylic group to TiO2 and hydrophobic interaction of the pyrene moiety with the PS network. We investigated the effects of the PS fraction on morphology, imprinting properties, and guest binding. The template could be completely removed by incubating the films in an acetonitrile solution of pyrene, which is due to the stronger π–π interaction between PBA and pyrene than the interaction between PBA and its binding site. A guest binding study with pyrene, 1-aminopyrene, pyrenemethanol, and anthracene-9-carboxylic acid showed that the hybrid films possessed selectivity and much higher binding capacity for PBA. This study demonstrates the first case of clear PS-assisted imprinting, where the π–π interaction of the template with a linear (non-crosslinked) polymer creates selective binding sites and enhances the binding capacity. This is a driving force for guest binding in addition to the interaction of the template/analyte with TiO2. All molecularly imprinted films displayed better binding, repeatability and reversibility compared to the respective non-imprinted films.
Figure
Illustration of the fabricated polystyrene/titania hybrids imprinted with 1-pyrenebutyric acid providing the interaction between the organic and inorganic components through the pyrene and carboxylic moieties  相似文献   

18.
A new ruthenium ion imprinted polymer was prepared from the Ru(III) 2-thiobarbituric acid complex (the template), methacrylic acid or acrylamide (the functional monomers), and ethylene glycol dimethacrylate (the cross-linking agent) using 2,2′-azobisisobutyronitrile as the radical initiator. The ion imprinted polymer was characterized and used as a selective sorbent for the solid phase extraction of Ru(III) ions. The effects of type of functional monomer, sample volume, solution pH and flow rate on the extraction efficiency were studied in the dynamic mode. Ru(III) ion was quantitatively retained on the sorbents in the pH range from 3.5 to 10, and can be eluted with 4 mol L?1 aqueous ammonia. The affinity of Ru(III) for the ion imprinted polymer based on the acrylamide monomer is weaker than that for the polymer based on the methacrylic acid monomer, which therefore was used in interference studies and in analytical applications. Following extraction of Ru(III) ions with the imprint and their subsequent elution from the polymer with aqueous ammonia, Ru(III) was detected by electrothermal atomic absorption spectrometry with a detection limit of 0.21 ng mL?1. The method was successfully applied to the determination of trace amounts of Ru(III) in water, waste, road dust and platinum ore (CRM SARM 76) with a reproducibility (expressed as RSD) below 6.4 %.
Figure
The new ion imprinted polymer was prepared and used for the separation of ruthenium from water and most complex environmental samples, such as road dust and platinum ore (CRM SARM 76) prior ETAAS determination.  相似文献   

19.
We report on a surface molecular imprinting strategy for synthesizing core-shell particles whose shell is imprinted with chlorpyrifos (CPF). The particles were prepared by copolymerization of the methacryloyl groups on the surface of silica particles modified with 3-methacryloxypropyl trimethoxysilane a functional monomer and a cross-linking agent. The imprinted particles exhibit larger binding capacity, faster binding kinetics, and higher recognition selectivity for CPF. Combined with highly sensitive chemiluminescence assay, the method was applied to the determination of CPF with a detection limit of 0.92?nM which is about 2 orders of magnitude lower than that by conventional CL method. The method also displays repeatability for more than 200 times.
Figure
Schematic illustration of a surface molecular imprinting strategy for synthesizing core-shell particles with CPF-imprinted shells and the CL kinetics curves of MIP-based CL method for the determination of chlorpyrifos.  相似文献   

20.
We report on the synthesis of cesium ion-imprinted polymer nanoparticles that were prepared by a precipitation polymerization strategy using dibenzo-24-crown-8 ether as a selective crown ether, methacrylic acid as the functional monomer, ethyleneglycol dimethacrylate as the crosslinker, and AIBN as the radical initiator. The prepared sorbents have a diameter of 50–90 nm and display highly selective binding capability for Cs(I) ion, with rapid adsorption and desorption. The maximum adsorption capacity is 50 mg g?1, and the preconcentration factor is around 100 at pH 9.0. Cesium ion was then determined by flame photometry with a detection limit (3σ) of 0.7 ng mL?1 and with a standard deviation of 0.9 %.
Figure
A novel nano-sized ion imprinted polymer has been prepared for separation and determination of Cs(I) ions in different water samples. The results indicated that the use of imprinted nanoparticles has many advantages, such as selectivity, reusability, application in the complex matrixes and preconcentration of the initial ions in dilute solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号