首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 925 毫秒
1.
In this paper, a Lagrangian-based heuristic is proposed for the degree constrained minimum spanning tree problem. The heuristic uses Lagrangian relaxation information to guide the construction of feasible solutions to the problem. The scheme operates, within a Lagrangian relaxation framework, with calls to a greedy construction heuristic, followed by a heuristic improvement procedure. A look ahead infeasibility prevention mechanism, introduced into the greedy heuristic, allowed us to solve instances of the problem where some of the vertices are restricted to having degrees 1 or 2. Furthermore, in order to cut down on CPU time, a restricted version of the original problem is formulated and used to generate feasible solutions. Extensive computational experiments were conducted and indicate that the proposed heuristic is competitive with the best heuristics and metaheuristics in the literature.  相似文献   

2.
Given a planar point setS, a triangulation ofS is a maximal set of non-intersecting line segments connecting the points. The minimum weight triangulation problem is to find a triangulation ofS such that the sum of the lengths of the line segments in it is the smallest. No polynomial time algorithm is known to produce the optimal or even a constant approximation of the optimal solution, and it is also unknown whether the problem is NP-hard. In this paper, we propose two improved heuristics, which triangulate a set ofn points in a plane inO(n 3) time and never do worse than the minimum spanning tree triangulation algorithm given by Lingas and the greedy spanning tree triangulation algorithm given by Heath and Pemmaraju. These two algorithms both produce an optimal triangulation if the points are the vertices of a convex polygon, and also do the same in some special cases.  相似文献   

3.
This paper proposes a GRASP (Greedy Randomized Adaptive Search Procedure) algorithm for the multi-criteria minimum spanning tree problem, which is NP-hard. In this problem a vector of costs is defined for each edge of the graph and the problem is to find all Pareto optimal or efficient spanning trees (solutions). The algorithm is based on the optimization of different weighted utility functions. In each iteration, a weight vector is defined and a solution is built using a greedy randomized constructive procedure. The found solution is submitted to a local search trying to improve the value of the weighted utility function. We use a drop-and-add neighborhood where the spanning trees are represented by Prufer numbers. In order to find a variety of efficient solutions, we use different weight vectors, which are distributed uniformly on the Pareto frontier. The proposed algorithm is tested on problems with r=2 and 3 criteria. For non-complete graphs with n=10, 20 and 30 nodes, the performance of the algorithm is tested against a complete enumeration. For complete graphs with n=20, 30 and 50 nodes the performance of the algorithm is tested using two types of weighted utility functions. The algorithm is also compared with the multi-criteria version of the Kruskal’s algorithm, which generates supported efficient solutions. This work was funded by the Municipal Town Hall of Campos dos Goytacazes city. The used computer was acquired with resource of CNPq.  相似文献   

4.
5.
The problem of constructing a spanning tree for a graph G = (V, E) with n vertices whose maximal degree is the smallest among all spanning trees of G is considered. This problem is easily shown to be NP-hard. In the Steiner version of this problem, along with the input graph, a set of distinguished vertices D V is given. A minimum-degree Steiner tree is a tree of minimum degree which spans at least the set D. Iterative polynomial time approximation algorithms for the problems are given. The algorithms compute trees whose maximal degree is at most Δ* + 1, where Δ* is the degree of some optimal tree for the respective problems. Unless P = NP, this is the best bound achievable in polynomial time.  相似文献   

6.
This paper studies heuristics for the minimum labelling spanning tree (MLST) problem. The purpose is to find a spanning tree using edges that are as similar as possible. Given an undirected labelled connected graph, the minimum labelling spanning tree problem seeks a spanning tree whose edges have the smallest number of distinct labels. This problem has been shown to be NP-hard. A Greedy Randomized Adaptive Search Procedure (GRASP) and a Variable Neighbourhood Search (VNS) are proposed in this paper. They are compared with other algorithms recommended in the literature: the Modified Genetic Algorithm and the Pilot Method. Nonparametric statistical tests show that the heuristics based on GRASP and VNS outperform the other algorithms tested. Furthermore, a comparison with the results provided by an exact approach shows that we may quickly obtain optimal or near-optimal solutions with the proposed heuristics.  相似文献   

7.
In a previous paper, Gouveia and Magnanti (2003) found diameter-constrained minimal spanning and Steiner tree problems to be more difficult to solve when the tree diameter D is odd. In this paper, we provide an alternate modeling approach that views problems with odd diameters as the superposition of two problems with even diameters. We show how to tighten the resulting formulation to develop a model with a stronger linear programming relaxation. The linear programming gaps for the tightened model are very small, typically less than 0.5–, and are usually one third to one tenth of the gaps of the best previous model described in Gouveia and Magnanti (2003). Moreover, the new model permits us to solve large Euclidean problem instances that are not solvable by prior approaches. Research funded in part by the Research Projects POCTI-ISFL-1-152,POSI/CPS/41459/2001 and POCTI/MAT/139/94 Research funded in part by the Singapore-MITAlliance(SMA)  相似文献   

8.
The capacitated minimum spanning tree (CMST) problem is fundamental to the design of centralized communication networks. In this paper we consider the multi-level capacitated minimum spanning tree problem, a generalization of the well-known CMST problem. Based on work previously done in the field, three heuristics are presented, addressing unit and non-unit demand cases. The proposed heuristics have been also integrated into a mixed integer programming solver. Evaluation results are presented, for an extensive set of experiments, indicating the improvements that the heuristics bring to the particular problem.  相似文献   

9.
The minimum vertex ranking spanning tree problem (MVRST) is to find a spanning tree of G whose vertex ranking is minimum. In this paper, we show that MVRST is NP-hard. To prove this, we polynomially reduce the 3-dimensional matching problem to MVRST. Moreover, we present a (⌈Ds/2⌉+1)/(⌊log2(Ds+1)⌋+1)-approximation algorithm for MVRST where Ds is the minimum diameter of spanning trees of G.  相似文献   

10.
Given an undirected, connected network G=(V,E) with weights on the edges, the cut basis problem is asking for a maximal number of linear independent cuts such that the sum of the cut weights is minimized. Surprisingly, this problem has not attained as much attention as another graph theoretic problem closely related to it, namely, the cycle basis problem. We consider two versions of the problem: the unconstrained and the fundamental cut basis problem.For the unconstrained case, where the cuts in the basis can be of an arbitrary kind, the problem can be written as a multiterminal network flow problem, and is thus solvable in strongly polynomial time. In contrast, the fundamental cut basis problem, where all cuts in the basis are obtained by deleting an edge, each from a spanning tree T, is shown to be NP-hard. In this proof, we also show that a tree which induces the minimum fundamental cycle basis is also an optimal solution for the minimum fundamental cut basis problem in unweighted graphs.We present heuristics, integer programming formulations and summarize first experiences with numerical tests.  相似文献   

11.
The hop-constrained minimum spanning tree problem (HMSTP) is an NP-hard problem arising in the design of centralized telecommunication networks with quality of service constraints. We show that the HMSTP is equivalent to a Steiner tree problem (STP) in an appropriate layered graph. We prove that the directed cut model for the STP defined in the layered graph, dominates the best previously known models for the HMSTP. We also show that the Steiner directed cuts in the extended layered graph space can be viewed as being a stronger version of some previously known HMSTP cuts in the original design space. Moreover, we show that these strengthened cuts can be combined and projected into new families of cuts, including facet defining ones, in the original design space. We also adapt the proposed approach to the diameter-constrained minimum spanning tree problem (DMSTP). Computational results with a branch-and-cut algorithm show that the proposed method is significantly better than previously known methods on both problems.  相似文献   

12.
Paths, trees and matchings under disjunctive constraints   总被引:1,自引:0,他引:1  
We study the minimum spanning tree problem, the maximum matching problem and the shortest path problem subject to binary disjunctive constraints: A negative disjunctive constraint states that a certain pair of edges cannot be contained simultaneously in a feasible solution. It is convenient to represent these negative disjunctive constraints in terms of a so-called conflict graph whose vertices correspond to the edges of the underlying graph, and whose edges encode the constraints.We prove that the minimum spanning tree problem is strongly NP-hard, even if every connected component of the conflict graph is a path of length two. On the positive side, this problem is polynomially solvable if every connected component is a single edge (that is, a path of length one). The maximum matching problem is NP-hard for conflict graphs where every connected component is a single edge.Furthermore we will also investigate these graph problems under positive disjunctive constraints: In this setting for certain pairs of edges, a feasible solution must contain at least one edge from every pair. We establish a number of complexity results for these variants including APX-hardness for the shortest path problem.  相似文献   

13.
Large scale set covering problems have often been approached by constructive greedy heuristics, and much research has been devoted to the design and evaluation of various greedy criteria for such heuristics. A criterion proposed by Caprara et al. (1999) is based on reduced costs with respect to the yet unfulfilled constraints, and the resulting greedy heuristic is reported to be superior to those based on original costs or ordinary reduced costs.We give a theoretical justification of the greedy criterion proposed by Caprara et al. by deriving it from a global optimality condition for general non-convex optimisation problems. It is shown that this criterion is in fact greedy with respect to incremental contributions to a quantity which at termination coincides with the deviation between a Lagrangian dual bound and the objective value of the feasible solution found.  相似文献   

14.
In this paper, we introduce the problem of computing a minimum edge ranking spanning tree (MERST); i.e., find a spanning tree of a given graph G whose edge ranking is minimum. Although the minimum edge ranking of a given tree can be computed in polynomial time, we show that problem MERST is NP-hard. Furthermore, we present an approximation algorithm for MERST, which realizes its worst case performance ratio where n is the number of vertices in G and Δ* is the maximum degree of a spanning tree whose maximum degree is minimum. Although the approximation algorithm is a combination of two existing algorithms for the restricted spanning tree problem and for the minimum edge ranking problem of trees, the analysis is based on novel properties of the edge ranking of trees.  相似文献   

15.
This paper develops a greedy heuristic for the capacitated minimum spanning tree problem (CMSTP), based on the two widely known methods of Prim and of Esau–Williams. The proposed algorithm intertwines two-stages: an enhanced combination of the Prim and Esau–Williams approaches via augmented and synthetic node selection criteria, and an increase of the feasible solution space by perturbing the input data using the law of cosines. Computational tests on benchmark problems show that the new heuristic provides extremely good performance results for the CMSTP, justifying its effectiveness and robustness. Furthermore, excluding the feasible space expansion, we show that we can still obtain good quality solutions in very short computational times.  相似文献   

16.
The constrained forest problem seeks a minimum-weight spanning forest in an undirected edge-weighted graph such that each tree spans at least a specified number of vertices. We present a structured class of greedy heuristics for this NP-hard problem, and identify the best heuristic.  相似文献   

17.
Given a connected graph G, a vertex v of G is said to be a branch vertex if its degree is greater than 2. We consider two problems arising in the context of optical networks:
(i)  Finding a spanning tree of G with the minimum number of branch vertices and
(ii)  Finding a spanning tree of G such that the degree sum of the branch vertices is minimized.
For these NP-hard problems, heuristics, that give good quality solutions, do not exist in the literature. In this paper we analyze the relation between the problems, provide a single commodity flow formulation to solve the problems by means of a solver and develop different heuristic strategies to compute feasible solutions that are compared with the exact ones. Our extensive computational results show the algorithms to be very fast and effective.  相似文献   

18.
In the Capacitated Clustering Problem (CCP), a given set of n weighted points is to be partitioned into p clusters such that, the total weight of the points in each cluster does not exceed a given cluster capacity. The objective is to find a set of p centers that minimises total scatter of points allocated to them. In this paper a new constructive method, a general framework to improve the performance of greedy constructive heuristics, and a problem space search procedure for the CCP are proposed. The constructive heuristic finds patterns of natural subgrouping in the input data using concept of density of points. Elements of adaptive computation and periodic construction–deconstruction concepts are implemented within the constructive heuristic to develop a general framework for building efficient heuristics. The problem-space search procedure is based on perturbations of input data for which a controlled perturbation strategy, intensification and diversification strategies are developed. The implemented algorithms are compared with existing methods on a standard set of bench-marks and on new sets of large-sized instances. The results illustrate the strengths of our algorithms in terms of solution quality and computational efficiency.  相似文献   

19.
The minimum weighted k-cardinality subgraph problem consists of finding a connected subgraph of a given graph with exactly k edges whose sum of weights is minimum. For this NP-hard combinatorial problem, only constructive types of heuristics have been suggested in the literature. In this paper we propose a new heuristic based on variable neighborhood search metaheuristic rules. This procedure uses a new local search developed by us. Extensive numerical results that include graphs with up to 5,000 vertices are reported. It appears that VNS outperforms all previous methods.  相似文献   

20.
An arborescence of a multihop radio network is a directed spanning tree (with rootx) such that the edges are directed away from the root. Based upon an arborescence,x canbroadcast a message to other nodes according to the directed edges of the spanning tree. The minimum transmission power arborescence problem is to find an arborescence such that the message can be broadcasted to other nodes by using a minimal amount of transmission power. The minimum delay arborescence problem is to find an arborescence such that a message can be broadcasted to other nodes by using a minimal number of broadcast transmission. In this paper we show that both these problems areNP-complete. The reductions are from the maximum leaf spanning tree problem.Areverse arborescence is similar to an arborescence except that the edges are directed toward the root. Based upon a reverse arborescence, the root node cancollect information from other nodes. In this paper we also show that the reverse minimum transmission power arborescence problem can be solved with the same computational complexity as that of finding a minimum cost spanning tree, and the reverse minimum delay arborescence problem can be solved with the same computational complexity as that of finding a spanning tree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号