首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this article, we study the spectrum of the Stokes operator in a 3D two layer domain with interface, obtain the asymptotic estimates on the spectrum of the Stokes operator as thickness ε goes to zero. Based on the spectral decomposition of the Stokes operator, a new average-like operator is introduced and applied to the study of Navier-Stokes equation in the two layer thin domains under interface boundary condition. We prove the global existence of strong solutions to the 3D Navier-Stokes equations when the initial data and external forces are in large sets as the thickness of the domain is small. This article is a continuation of our study on the Stokes operator under Navier friction boundary condition. Due to the viscosity distinction between the two layers, the Stokes operator displays radically different spectral structure from that under Navier friction boundary condition, then causes great difficulty to the analysis.  相似文献   

2.
We give an overview on the solution of the stationary Navier-Stokes equations for non newtonian incompressible fluids established by G. Dias and M.M. Santos (Steady flow for shear thickening fluids with arbitrary fluxes, J. Differential Equations 252 (2012), no. 6, 3873-3898), propose a definition for domains with unbounded curved channels which encompasses domains with an unbounded boundary, domains with nozzles, and domains with a boundary being a punctured surface, and argue on the existence of steady flowfor incompressible fluids with arbitrary fluxes in such domains.  相似文献   

3.
We study a system of 3D Navier-Stokes equations in a two-layer parallelepiped-like domain with an interface coupling of the velocities and mixed (free/periodic) boundary condition on the external boundary. The system under consideration can be viewed as a simplified model describing some features of the mesoscale interaction of the ocean and atmosphere. In case when our domain is thin (of order ε), we prove the global existence of the strong solutions corresponding to a large set of initial data and forcing terms (roughly, of order ε−2/3). We also give some results concerning the large time dynamics of the solutions. In particular, we prove a spatial regularity of the global weak attractor.  相似文献   

4.
Loeb space methods are used to prove existence of an optimal control for general 3D stochastic Navier–Stokes equations with multiplicative noise. The possible non-uniqueness of the solutions mean that it is necessary to utilize the notion of a non-standard approximate solution developed in the paper by N.J. Cutland and Keisler H.J. 2004, Global attractors for 3-dimensional stochastic Navier–Stokes equations, Journal of Dynamics and Differential Equations, pp. 16205–16266, for the study of attractors.  相似文献   

5.
The asymptotic behavior of solutions of the three-dimensional Navier-Stokes equations is considered on bounded smooth domains with no-slip boundary conditions and on periodic domains. Asymptotic regularity conditions are presented to ensure that the convergence of a Leray-Hopf weak solution to its weak ω-limit set (weak in the sense of the weak topology of the space H of square-integrable divergence-free velocity fields with the appropriate boundary conditions) are achieved also in the strong topology. It is proved that the weak ω-limit set is strongly compact and strongly attracts the corresponding solution if and only if all the solutions in the weak ω-limit set are continuous in the strong topology of H. Corresponding results for the strong convergence towards the weak global attractor of Foias and Temam are also presented. In this case, it is proved that the weak global attractor is strongly compact and strongly attracts the weak solutions, uniformly with respect to uniformly bounded sets of weak solutions, if and only if all the global weak solutions in the weak global attractor are strongly continuous in H.  相似文献   

6.
We study the existence, uniqueness and asymptotic behavior, as well as the stability of a special kind of traveling wave solutions for competitive PDE systems involving intrinsic growth, competition, crowding effects and diffusion. The traveling waves are exclusive in the sense that as the variable goes to positive or negative infinity, different species are close to extinction or carrying capacity. We perform an appropriate affine transformation of the traveling wave equations into monotone form and construct appropriate upper and lower solutions. By this means, we reduce the existence proof to application of well-known theory about monotone traveling wave systems (cf. [A. Leung, Systems of Nonlinear Partial Differential Equations: Applications to Biology and Engineering, MIA, Kluwer, Boston, 1989; J. Wu, X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dynam. Differential Equations 13 (2001) 651-687] and [I. Volpert, V. Volpert, V. Volpert, Traveling Wave Solutions of Parabolic Systems, Transl. Math. Monogr., vol. 140, Amer. Math. Soc., Providence, RI, 1994]). Then, by using spectral analysis of the linearization over the profile, we prove the orbital stability of the traveling wave in some Banach spaces with exponentially weighted norm. Furthermore, we show that the introduction of some weight is necessary in the sense that, in general, traveling wave solutions with initial perturbations in the (unweighted) space C0 are unstable (cf. [I. Volpert, V. Volpert, V. Volpert, Traveling Wave Solutions of Parabolic Systems, Transl. Math. Monogr., vol. 140, Amer. Math. Soc., Providence, RI, 1994] and [D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., vol. 840, Springer-Verlag, New York, 1981]).  相似文献   

7.
We study the asymptotic behaviour of non-autonomous 2D Navier–Stokes equations in unbounded domains for which a Poincaré inequality holds. In particular, we give sufficient conditions for their pullback attractor to have finite fractal dimension. The existence of pullback attractors in this framework comes from the existence of bounded absorbing sets of pullback asymptotically compact processes [T. Caraballo, G. ?ukaszewicz, J. Real, Pullback attractors for asymptotically compact nonautonomous dynamical systems, Nonlinear Anal. 64 (3) (2006) 484–498]. We show that, under suitable conditions, the method of Lyapunov exponents in [P. Constantin, C. Foias, R. Temam, Attractors representing turbulent flows, Mem. Amer. Math. Soc. 53 (1984) [5]] for the dimension of attractors can be developed in this new context.  相似文献   

8.
The main subject of this work is to study the concept of very weak solution for the hydrostatic Stokes system with mixed boundary conditions (non-smooth Neumann conditions on the rigid surface and homogeneous Dirichlet conditions elsewhere on the boundary). In the Stokes framework, this concept has been studied by Conca [Rev. Mat. Apl. 10 (1989)] imposing non-smooth Dirichlet boundary conditions.In this paper, we introduce the dual problem that turns out to be a hydrostatic Stokes system with non-free divergence condition. First, we obtain strong regularity for this dual problem (which can be viewed as a generalisation of the regularity results for the hydrostatic Stokes system with free divergence condition obtained by Ziane [Appl. Anal. 58 (1995)]). Afterwards, we prove existence and uniqueness of very weak solution for the (primal) problem.As a consequence of this result, the existence of strong solution for the non-stationary hydrostatic Navier-Stokes equations is proved, weakening the hypothesis over the time derivative of the wind stress tensor imposed by Guillén-González, Masmoudi and Rodríguez-Bellido [Differential Integral Equations 50 (2001)].  相似文献   

9.
Equations of Hamilton-Jacobi type arise in many areas of application, including the calculus of variations, control theory and differential games. Recently M. G. Crandall and P.-L. Lions (Trans. Amer. Math. Soc.277 (1983), 1–42) introduced the class of “viscosity” solutions of these equations and proved uniqueness within this class. This paper discusses the existence of these solutions under assumptions closely related to the ones which guarantee the uniqueness.  相似文献   

10.
The goal of this article is to study the boundary layer of wall bounded flows in a channel at small viscosity when the boundaries are uniformly noncharacteristic, i.e., there is injection and/or suction everywhere at the boundary. Following earlier work on the boundary layer for linearized Navier-Stokes equations in the case where the boundaries are characteristic (no-slip at the boundary and non-permeable), we consider here the case where the boundary is permeable and thus noncharacteristic. The form of the boundary layer and convergence results are derived in two cases: linearized equation and full nonlinear equations. We prove that there exists a boundary layer at the outlet (downwind) of the form eUz/ε where U is the speed of injection/suction at the boundary, z is the distance to the outlet of the channel, and ε is the kinematic viscosity. We improve an earlier result of S. N. Alekseenko (1994, Siberian Math. J.35, No. 2, 209-230) where the convergence in L2 of the solutions of the Navier-Stokes equations to that of the Euler equations at vanishing viscosity was established. In the two dimensional case we are able to derive the physically relevant uniform in space (L norm) estimates of the boundary layer. The uniform in space estimate is derived by properly developing our previous idea of better control on the tangential derivative and the use of an anisotropic Sobolev imbedding. To the best of our knowledge this is the first rigorously proved result concerning boundary layers for the full (nonlinear) Navier-Stokes equations for incompressible fluids.  相似文献   

11.
The problem of determining when a given discrete flow on a topological space is embeddable in some continuous flow was mentioned by G. R. Sell (“Topological Dynamics and Ordinary Differential Equations,” Van Nostrand, New York, 1971) in his book on topological dynamics. In this book, the theory of generalized dynamical systems is exploited in the qualitative study of differential equations. Even more complicated is the problem of simultaneously embedding two or more discrete flows in a single continuous flow. We examine both of these problems when the underlying topological space is the space R of the real numbers.  相似文献   

12.
In this paper, we consider some semilinear elliptic equations with Hardy potential. By using linking theorem in [P. Rabinowitz, Minimax Methods in Critical Points Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math., vol. 65, Amer. Math. Soc., Providence, RI, 1986] and analyzing the effect of nonlinearities, we establish the existence of nontrivial solutions.  相似文献   

13.
In this paper we prove that the L2 spectral radius of the traction double layer potential operator associated with the Lamé system on an infinite sector in R2 is within 10−2 from a certain conjectured value which depends explicitly on the aperture of the sector and the Lamé moduli of the system. This type of result is relevant to the spectral radius conjecture, cf., e.g., Problem 3.2.12 in [C.E. Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, CBMS Reg. Conf. Ser. Math., vol. 83, Amer. Math. Soc., Providence, RI, 1994]. The techniques employed in the paper are a blend of classical tools such as Mellin transforms, and Calderón-Zygmund theory, as well as interval analysis—resulting in a computer-aided proof.  相似文献   

14.
In the past several years, there has been considerable progress made on a general left-definite theory associated with a self-adjoint operator A that is bounded below in a Hilbert space H; the term ‘left-definite’ has its origins in differential equations but Littlejohn and Wellman [L. L. Littlejohn, R. Wellman, A general left-definite theory for certain self-adjoint operators with applications to differential equations, J. Differential Equations, 181 (2) (2002) 280-339] generalized the main ideas to a general abstract setting. In particular, it is known that such an operator A generates a continuum {Hr}r>0 of Hilbert spaces and a continuum of {Ar}r>0 of self-adjoint operators. In this paper, we review the main theoretical results in [L. L. Littlejohn, R. Wellman, A general left-definite theory for certain self-adjoint operators with applications to differential equations, J. Differential Equations, 181 (2) (2002) 280-339]; moreover, we apply these results to several specific examples, including the classical orthogonal polynomials of Laguerre, Hermite, and Jacobi.  相似文献   

15.
In this paper we consider conservation laws with diffusion and dispersion terms. We study the convergence for approximation applied to conservation laws with source terms. The proof is based on the Hwang and Tzavaras's new approach [Seok Hwang, Athanasios E. Tzavaras, Kinetic decomposition of approximate solutions to conservation laws: Application to relaxation and diffusion-dispersion approximations, Comm. Partial Differential Equations 27 (5-6) (2002) 1229-1254] and the kinetic formulation developed by Lions, Perthame, and Tadmor [P.-L. Lions, B. Perthame, E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc. 7 (1) (1994) 169-191].  相似文献   

16.
In this paper, we study the inviscid limit problem for the Navier-Stokes equations of one-dimensional compressible viscous gas on half plane. We prove that if the solution of the inviscid Euler system on half plane is piecewise smooth with a single shock satisfying the entropy condition, then there exist solutions to Navier-Stokes equations which converge to the inviscid solution away from the shock discontinuity and the boundary at an optimal rate of ε1 as the viscosity ε tends to zero.  相似文献   

17.
We consider the barotropic Navier-Stokes system describing the motion of a compressible viscous fluid confined to a cavity shaped as a thin rod Ω ε =εQ×(0,1), Q?R 2. We show that the weak solutions in the 3D domain converge to (strong) solutions of the limit 1D Navier-Stokes system as ε→0.  相似文献   

18.
For a strong solution u(x,t) of the Navier-Stokes equations in exterior domain Ω in Rn where n=2,3, we study the time decay of ‖α|x|u(t)Lp for α<n. When a domain has a boundary, pressure term makes an obstacle since we do not have enough information on the pressure term near the boundary. To overcome the difficulty, we adopt the ideas in [H.-O. Bae, B.J. Jin, Temporal and spatial decay rates of Navier-Stokes solutions in exterior domains, Bull. Korean Math. Soc. 44 (3) (2007) 547-567; H.-O. Bae, B.J. Jin, Asymptotic behavior for the Navier-Stokes solutions in 2D exterior domains, J. Funct. Anal. 240 (2006) 508-529] and we will extend Bae and Jin's results by modifying their methods.  相似文献   

19.
In this paper we conclude the analysis started in [J.M. Arrieta, A.N. Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2006) 551-597] and continued in [J.M. Arrieta, A.N. Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains II. The limiting problem, J. Differential Equations 247 (1) (2009) 174-202 (this issue)] concerning the behavior of the asymptotic dynamics of a dissipative reaction-diffusion equation in a dumbbell domain as the channel shrinks to a line segment. In [J.M. Arrieta, A.N. Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2006) 551-597], we have established an appropriate functional analytic framework to address this problem and we have shown the continuity of the set of equilibria. In [J.M. Arrieta, A.N. Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains II. The limiting problem, J. Differential Equations 247 (1) (2009) 174-202 (this issue)], we have analyzed the behavior of the limiting problem. In this paper we show that the attractors are upper semicontinuous and, moreover, if all equilibria of the limiting problem are hyperbolic, then they are lower semicontinuous and therefore, continuous. The continuity is obtained in Lp and H1 norms.  相似文献   

20.
Two fixed point theorems for the sum of contractive and compact operators are obtained in this paper, which generalize and improve the corresponding results in [H. Schaefer, Über die methode der a priori-Schranken, Math. Ann. 129 (1955) 415-416; T.A. Burton, Integral equations, implicit functions and fixed points, Proc. Amer. Math. Soc. 124 (1996) 2383-2390; V.I. Istrǎtescu, Fixed Point Theory, an Introduction, Reidel, Dordrecht, 1981; T.A. Burton, K. Colleen, A fixed point theorem of Krasnoselskii-Schaefer type, Math. Nachr. 189 (1998) 23-31; D.R. Smart, Fixed Point Theorems, Cambridge Univ. Press, Cambridge, 1980]. As the applications for the results, we obtain the existence of periodic solutions for some evolution equations with delay, which extend the corresponding results in [T.A. Burton, B. Zhang, Periodic solutions of abstract differential equations with infinite delay, J. Differential Equations 90 (1991) 357-396].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号