首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of the present work is to evaluate the integrated reliability of multistoried space frame subjected to random earthquake. The stochastic ground motion is described by fully non-stationary sigma-oscillatory model. The stochastic dynamic analysis is performed in the frequency domain to obtain the power spectral density function of random response. Finally, the reliability formulations are developed based on computed random response through the solution of first passage problem. A building frame idealized as a space frame in finite element modelling is considered for reliability analysis. Simple modal analysis is also performed for comparison of results.  相似文献   

2.
The present study involves computation of stochastic sensitivity of structures with uncertain structural parameters subjected to random earthquake loading. The formulations are provided in frequency domain. A strong earthquake-induced ground motion is considered as a random process defined by respective power spectral density function. The uncertain structural parameters are modelled as homogeneous Gaussian stochastic field and discretized by the local averaging method. The discretized stochastic field is simulated by the Cholesky decomposition of respective co-variance matrix. By expanding the dynamic stiffness matrix about its reference value, the advantage of Neumann Expansion technique is explored within the framework of Monte Carlo simulation, to compute responses as well as sensitivity of response quantities. This approach involves only a single decomposition of the dynamic stiffness matrix for the entire simulated structure and the facility that several stochastic fields can be tackled simultaneously are basic advantages of the Neumann Expansion. The proposed algorithm is explained by an example problem.  相似文献   

3.
We consider the focusing (attractive) nonlinear Schrödinger (NLS) equation with an external, symmetric potential which vanishes at infinity and supports a linear bound state. We prove that the symmetric, nonlinear ground states must undergo a symmetry breaking bifurcation if the potential has a non-degenerate local maxima at zero. Under a generic assumption we show that the bifurcation is either a subcritical or supercritical pitchfork. In the particular case of double-well potentials with large separation, the power of nonlinearity determines the subcritical or supercritical character of the bifurcation. The results are obtained from a careful analysis of the spectral properties of the ground states at both small and large values for the corresponding eigenvalue parameter.  相似文献   

4.
地震易损性是指在不同地震强度作用下结构达到或超过某种极限状态的概率分布描述。为了对神光Ⅲ主机装置靶场建筑结构进行地震易损性评估,采用汶川地震波作为输入,对靶场建筑结构进行非线性时程分析。并以最大层间位移角作为结构破坏指标,以PGA(Peak Ground Acceleration)作为地震动强度指标,分析得到了结构的地震易损性曲线和易损性矩阵,当发生8度及9度罕遇地震时,主机装置靶场建筑结构发生破坏损伤概率很小的结论。  相似文献   

5.
We model current-induced domain wall motion in magnetic nanowires with the variable width. Employing the collective coordinate method we trace the wall dynamics. The effect of the width modulation is implemented by spatial dependence of an effective magnetic field. The wall destination in the potential energy landscape due to the magnetic anisotropy and the spatial nonuniformity is obtained as a function of the current density. For a nanowire of a periodically modulated width, we identify three (pinned, nonlinear, and linear) current density regimes for current-induced wall motion. The threshold current densities depend on the pulse duration as well as the magnitude of wire modulation. In the nonlinear regime, application of ns order current pulses results in wall displacement which opposes or exceeds the prediction of the spin transfer mechanism. The finding explains stochastic nature of the domain wall displacement observed in recent experiments.  相似文献   

6.
The problem of modeling earthquake ground motions as design inputs for multi-degree-of-freedom inelastic structures is studied. The earthquake acceleration is expressed as a Fourier series modulated by an envelope function. The coefficients of the series representation are calculated such that the structure inelastic deformation is maximized subjected to predefined constraints. These constraints are taken to reflect known characteristics of recorded earthquakes such as upper bounds on the energy and peak values of the ground acceleration, velocity and displacement and upper and lower limits on the Fourier spectra of the ground acceleration. The material stress-strain behavior is modeled using bilinear and elastic-plastic relations. The resulting nonlinear optimization problem is solved by using the sequential quadratic optimization method. Issues related to various forms of energy dissipated by the inelastic structure are explored. The study also examines the effect of nonlinear damping models and the influence of the strain hardening ratio (ratio of the post-yield stiffness to the pre-yield stiffness) on the derived optimal earthquake and associated inelastic deformation. The formulation is demonstrated for a two-storey inelastic building frame with nonlinear damping.  相似文献   

7.
A novel case of probabilistic coupling for hybrid stochastic systems with chaotic components via Markovian switching is presented. We study its stability in the norm, in the sense of Lyapunov and present a quantitative scheme for detection of stochastic stability in the mean. In particular we examine the stability of chaotic dynamical systems in which a representative parameter undergoes a Markovian switching between two values corresponding to two qualitatively different attractors. To this end we employ, as case studies, the behaviour of two representative chaotic systems (the classic Rössler and the Thomas-Rössler models) under the influence of a probabilistic switch which modifies stochastically their parameters. A quantitative measure, based on a Lyapunov function, is proposed which detects regular or irregular motion and regimes of stability. In connection to biologically inspired models (Thomas-Rössler models), where strong fluctuations represent qualitative structural changes, we observe the appearance of stochastic resonance-like phenomena i.e. transitions that lead to orderly behavior when the noise increases. These are attributed to the nonlinear response of the system.  相似文献   

8.
Concepts of stability and symmetry in irreversible thermodynamics are developed through the analysis of system energy flows. The excess power function, derived from a local energy conservation equation, is shown to yield necessary and sufficient stability criteria for linear and nonlinear irreversible processes. In the absence of symmetry-destroying external forces, the linear range may be characterized by a set of phenomenological coefficient symmetries relating coupled forces and displacements, velocities, and accelerations, whereas rotational phenomena in nonlinear processes may be characterized by skew-symmetric components of the phenomenological coefficients. A physical interpretation of the nature of the skew-symmetric parts is given and the variational principle of minimum dissipation of energy is related to a stability criterion.  相似文献   

9.
We discuss how the effective parameters characterising averaged motion in nonlinear systems are affected by noise (random fluctuations). In this approach to stochastic dynamics, the stochastic system is replaced by its deterministic equivalent but with noise-dependent parameters. We show that it can help to resolve certain paradoxes and that it has a utility extending far beyond its usual application in passing from the microscopic equations of motion to the macroscopic ones. As illustrative examples, we consider the diode-capacitor circuit, a Brownian ratchet, and a generic stochastic resonance system. In the latter two cases we calculate for the first time their effective parameters of averaged motion as functions of noise intensity. We speculate that many other stochastic problems can be treated in a similar way. PACS: 05.10.Gg, 05.40.-a, 05.40.Jc  相似文献   

10.
In periodically driven nonlinear stochastic systems, noise may play a role of enhancing the output periodic signal (termed as stochastic resonance or SR). While in autonomous excitable systems, noise may play a role of increasing coherent motion (termed as coherence resonance or CR). So far the topics of SR and CR have been investigated separately as two major fields of studying the active roles of noise in nonlinear systems. We find that these two topics are closely related to each other. Specifically, SR occurs in such periodically driven systems that the corresponding autonomous systems show CR. The SR with sensitive frequency dependence can be observed when the corresponding autonomous system shows CR with finite characteristic frequency. Moreover, ‘resonant noise' and ‘resonant frequency' of SR coincide with those of CR.  相似文献   

11.
The polynomial chaos decomposition of stochastic variables and processes is implemented in conjunction with optimal polynomial control of nonlinear dynamical systems. The procedure is demonstrated on a base-excited system whereby ground motion is modeled as a stochastic process with a specified correlation function and is approximated by its Karhunen-Loeve expansion. An adaptive scheme for stochastic approximation with polynomial chaos bases is proposed which is based on a displacement-velocity norm and is applied to the identification of phase orbits of nonlinear oscillators. This approximation is then integrated in the design of an optimal polynomial controller, allowing for the efficient estimation of statistics and probability density functions of quantities of interest. Numerical investigations are carried out employing the polynomial chaos expansions and the Lyapunov asymptotic stability condition based control policy. The results reveal that the performance, as gaged by probabilistic quantities of interest, of the controlled oscillators is greatly improved. A comparative study is also presented against the classical stochastic optimal control, whereby statistical linearization based LQG is employed to design the optimal controller. It is remarked that the proposed polynomial chaos expansion is a preferred approach to the optimal control of nonlinear random oscillators.  相似文献   

12.
Many mechanical systems consist of continuum mechanical structures, having either linear or nonlinear elasticity or geometry, coupled to nonlinear oscillators. In this paper, we consider the class of linear continua coupled to mechanical pendula. In such mechanical systems, there often exist several natural time scales determined by the physics of the problem. Using a time scale splitting, we analyze a prototypical structural-mechanical system consisting of a planar nonlinear pendulum coupled to a flexible rod made of linear viscoelastic material. In this system both low-dimensional and high-dimensional chaos is observed. The low-dimensional chaos appears in the limit of small coupling between the continua and oscillator, where the natural frequency of the primary mode of the rod is much greater than the natural frequency of the pendulum. In this case, the motion resides on a slow manifold. As the coupling is increased, global motion moves off of the slow manifold and high-dimensional chaos is observed. We present a numerical bifurcation analysis of the resulting system illustrating the mechanism for the onset of high-dimensional chaos. Constrained invariant sets are computed to reveal a process from low-dimensional to high-dimensional transitions. Applications will be to both deterministic and stochastic bifurcations. Practical implications of the bifurcation from low-dimensional to high-dimensional chaos for detection of damage as well as global effects of noise will also be discussed.  相似文献   

13.
We analyze the variability in the x-ray lightcurves of the black hole candidate Cygnus X-1 by linear and nonlinear time series analysis methods. While a linear model describes the overall second order properties of the observed data well, surrogate data analysis reveals a significant deviation from linearity. We discuss the relation between shot noise models usually applied to analyze these data and linear stochastic autoregressive models. We debate statistical and interpretational issues of surrogate data testing for the present context. Finally, we suggest a combination of tools from linear and nonlinear time series analysis methods as a procedure to test the predictions of astrophysical models on observed data.  相似文献   

14.
15.
One century after Einstein's work, Brownian motion still remains both a fundamental open issue and a continuous source of inspiration for many areas of natural sciences. We first present a discussion about stochastic and deterministic approaches proposed in the literature to model the Brownian motion and more general diffusive behaviors. Then, we focus on the problems concerning the determination of the microscopic nature of diffusion by means of data analysis. Finally, we discuss the general conditions required for the onset of large scale diffusive motion.  相似文献   

16.
We investigate a class of nonlinear wave equations subject to periodic forcing and noise, and address the issue of energy optimization. Numerically, we use a pseudo-spectral method to solve the nonlinear stochastic partial differential equation and compute the energy of the system as a function of the driving amplitude in the presence of noise. In the fairly general setting where the system possesses two coexisting states, one with low and another with high energy, noise can induce intermittent switchings between the two states. A striking finding is that, for fixed noise, the system energy can be optimized by the driving in a form of resonance. The phenomenon can be explained by the Langevin dynamics of particle motion in a double-well potential system with symmetry breaking. The finding can have applications to small-size devices such as microelectromechanical resonators and to waves in fluid and plasma.  相似文献   

17.
18.
We study nonlinear logarithmic Schrödinger equation in three dimensions. We examine energy levels in this setting, we are especially interested in the ground state. We also show some topological properties of the spectrum. The main contribution of this paper is the first rigorous proof of existence of the ground state in logarithmic quantum mechanics.  相似文献   

19.
This paper deals with higher order instabilities which may occur in various synergetic systems. We extend the method given in our previous paper in several ways. We include continuous (and inhomogeneous) media described by nonlinear partial differential equations. While in our previous paper we assumed that the bifurcating trajectories remain close to the corresponding old one we now relax this assumption. It is now only assumed that the newly developing manifolds remain close to the originally attracting manifold. Furthermore we may allow for stochastic forces, which are important at phase transition points, or for weak external driving fields. Our approach avoids the difficulty of small divisors known from other approaches treating bifurcation of limit cycles. Our paper shows that in many cases the enormous number of degrees of freedom of a system can exactly be reduced to few relevant degrees of freedom (order parameters) close to situations where bifurcation occurs. The resulting order parameter equations may describe various kinds of motion including chaos.  相似文献   

20.
Chimera states are particular trajectories in systems of phase oscillators with nonlocal coupling that display a spatiotemporal pattern of coherent and incoherent motion. We present here a detailed analysis of the spectral properties for such trajectories. First, we study numerically their Lyapunov spectrum and its behavior for an increasing number of oscillators. The spectra demonstrate the hyperchaotic nature of the chimera states and show a correspondence of the Lyapunov dimension with the number of incoherent oscillators. Then, we pass to the thermodynamic limit equation and present an analytic approach to the spectrum of a corresponding linearized evolution operator. We show that, in this setting, the chimera state is neutrally stable and that the continuous spectrum coincides with the limit of the hyperchaotic Lyapunov spectrum obtained for the finite size systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号