首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The ditopic ligand PyPzOAP (N-[(Z)-amino(pyridin-2-yl)methylidene]-5-methyl-1-(pyridin-2-yl)-1H-pyrazole-3-carbohydrazonic acid) and the polytopic ligand 2-PzCAP (N'(3),N'(5)-bis[(1E)-1-(pyridin-2-yl)ethylidene]-1H-pyrazole-3,5-dicarbohydrazide) were synthesized in situ by condensation of methyl imino picolinate with 5-methyl-1-(2-pyridyl) pyrazole-3-carbohydrazide and 2-acetyl pyridine with pyrazole-3,5-dicarbohydrazide respectively. The ligands PyPzOAP and PzOAP (reported earlier, Dalton Trans., 2007, 1229) self-assemble to form homoleptic [2 × 2] tetranuclear M(4) (M = Cu(II) and Ni(II)) square grids structures [Cu(4)(PyPzOAP)(4)](NO(3))(4) (1), [Cu(4)(PzOAP)(4)](ClO(4))(4) (2) and [Ni(4)(PyPzOAP)(4)](NO(3))(4)·8H(2)O·2CH(3)CN (3). While the ligand 2-PzCAP forms a dicopper(II) complex [Cu(2)(2-PzCAP)(OH)(NO(3))(H(2)O)](NO(3))·2H(2)O (4). The complex 1 is a perfect square grid (a = 4.201 ?), whereas, 2 and 3 are almost square grids. All these compounds have been characterized by X-ray structural analyses and variable temperature magnetic susceptibility measurements. EPR studies have also been carried out for complexes 1, 2 and 4. In the Cu(4) grid (1), all the Cu(II) centers are in a distorted octahedral environment with N(4)O(2) chromophore, while, in complex 2, all four Cu(II) centers have a square pyramidal environment with N(3)O(2) chromophore. In complex 3, all four Ni(II) centers have distorted octahedral geometry with N(4)O(2) chromophore. In compound 4, the Cu(II) centers are in square pyramidal environment with N(3)O(2) chromophore. The magnetic properties of compounds 1 and 2 show the presence of intramolecular ferromagnetic exchange interaction (J = 5.88 cm(-1) for 1 and 4.78 cm(-1) for 2). The complex 3 shows weak intramolecular antiferromagnetic interaction (J = -4.02 cm(-1)). While, complex 4, shows strong antiferromagnetic behavior (J = -443 cm(-1)).  相似文献   

2.
The structures and magnetic properties of self-assembled copper(II) clusters and grids with the "tritopic" ligands 2poap (a), Cl2poap (b), m2poap (c), Cl2pomp (d), and 2pomp (e) are described [ligands derived by reaction of 4-R-2,6-pyridinedicarboxylic hydrazide (R = H, Cl, MeO) with 2-pyridinemethylimidate (a-c, respectively) or 2-acetylpyridine (d, R = Cl; e, R = H)]. Cl2poap and Cl2pomp self-assemble with Cu(NO(3))(2) to form octanuclear "pinwheel" cluster complexes [Cu(8)(Cl2poap-2H)(4)(NO(3))(8)].20H(2)O (1) and [Cu(8)(Cl2pomp-2H)(4)(NO(3))(8)].15H(2)O (2), built on a square [2 x 2] grid with four pendant copper arms, using "mild" reaction conditions. Similar reactions of Cl2pomp and 2pomp with Cu(ClO(4))(2) produce pinwheel clusters [Cu(8)(Cl2pomp-2H)(4)(H(2)O)(8)](ClO(4))(8).7H(2)O (3) and [Cu(8)(2pomp-2H)(4)(H(2)O)(8)](ClO(4))(8) (4), respectively. Heating a solution of 1 in MeOH/H(2)O produces a [3 x 3] nonanuclear square grid complex, [Cu(9)(Cl2poap-H)(3)(Cl2poap-2H)(3)](NO(3))(9).18H(2)O (5), which is also produced by direct reaction of the ligand and metal salt under similar conditions. Reaction of m2poap with Cu(NO(3))(2) produces only the [3 x 3] grid [Cu(9)(m2poap-H)(2)(m2poap-2H)(4)](NO(3))(8).17H(2)O (6) under similar conditions. Mixing the tritopic ligand 2poap with pyridine-2,6-dicarboxylic acid (picd) in the presence of Cu(NO(3))(2) produces a remarkable mixed ligand, nonanuclear grid complex [Cu(9)(2poap-H)(4)(picd-H)(3)(picd-2H)](NO(3))(9).9H(2)O (7), in which aromatic pi-stacking interactions are important in stabilizing the structure. Complexes 1-3 and 5-7 involve single oxygen atom (alkoxide) bridging connections between adjacent copper centers, while complex 4 has an unprecedented mixed micro-(N-N) and micro-O metal ion connectivity. Compound 1 (C(76)H(92)N(44)Cu(8)O(50)Cl(4)) crystallizes in the tetragonal system, space group I, with a = 21.645(1) A, c = 12.950(1) A, and Z = 2. Compound 2 (C(84)H(88)N(36)O(44)Cl(4)Cu(8)) crystallizes in the tetragonal system, space group I, with a = 21.2562(8) A, c = 12.7583(9) A, and Z = 2. Compound 4 (C(84)H(120)N(28)O(66)Cl(8)Cu(8)) crystallizes in the tetragonal system, space group I4(1)/a, with a = 20.7790(4) A, c = 32.561(1) A, and Z = 4. Compound 7(C(104)H(104)N(46)O(56)Cu(9)) crystallizes in the triclinic system, space group P, with a = 15.473(1) A, b = 19.869(2) A, c = 23.083(2) A, alpha = 88.890(2) degrees, beta = 81.511(2) degrees, gamma = 68.607(1) degrees, and Z = 2. All complexes exhibit dominant intramolecular ferromagnetic exchange coupling, resulting from an orthogonal bridging arrangement within each polynuclear structure.  相似文献   

3.
The ditopic ligand PyPzOAPz (N-[(Z)-amino(pyrazin-2-yl)methylidene]-5-methyl-1-(pyridin-2-yl)-1H-pyrazole-3-carbohydrazonic acid) was synthesized by in situ condensation of methyl imino pyrazine-2-carboxylate with 5-methyl-1-(2-pyridyl) pyrazole-3-carbohydrazide. In this work we have also used two of our earlier ligands PzCAP (5-methyl-N-[(1E)-1-(pyridin-2-yl)ethylidene]-1H-pyrazole-3-carbohydrazonic acid) (Dalton Trans., 2009, 8215) and PzOAP (N-[(Z)-amino(pyridin-2-yl)methylidene]-5-methyl-1H-pyrazole-3-carbohydrazonic acid) (Dalton Trans., 2007, 1229). These ligands PzCAP, PzOAP and PyPzOAPz were made to react with Mn(ClO(4))(2)·6H(2)O to produce three pentanuclear Mn(II) clusters [Mn(5)(PzCAP)(6)](ClO(4))(4) (1), [Mn(5)(PzOAP)(6)](ClO(4))(4) (2) and [Mn(5)(PyPzOAPz)(6)](ClO(4))(4) (3). These complexes have been characterized by X-ray structural analyses and variable temperature magnetic susceptibility measurements. All complexes have a pentanuclear core with trigonal bipyramidal arrangement of Mn(II) atoms, where, the axial metal centers have a N(3)O(3) chromophore and the equatorial centers have N(4)O(2) with an octahedral arrangement. These Mn(5)(II) clusters 1, 2 and 3 show the presence of antiferromagnetic coupling within the pentanuclear manganese(II) core (J = -2.95, -3.19 and -3.00 cm(-1) respectively). Density functional theory calculations and continuous shape measurement (CShM) studies have been performed on these complexes to provide a qualitative theoretical interpretation of the antiferromagnetic behaviour shown by them. The pentanuclear Mn(II) cluster (1) on reaction with Cu(NO(3))(2)·6H(2)O in 1:1 mole proportion in CH(3)OH:H(2)O (60?:?40) forms a homoleptic [2 × 2] tetranuclear Cu(4)(II) grid [Cu(4)(PzCAP)(4)(NO(3))(2)](NO(3))(2)·8H(2)O (4). The same Cu(4)(II) grid is also obtained from a direct reaction between the ditopic ligand PzCAP with Cu(NO(3))(2)·6H(2)O in 1:1 mole proportion. This conversion of a cluster to a grid is a novel observation.  相似文献   

4.
The syntheses, characterization and X-ray crystal structures of the first two examples of asymmetrically bridged dinuclear copper(ii) complexes containing a ferrocenecarboxylato ligand and a methoxo group in [{Cu(dmen)}2(micro-OMe){micro-O2C(eta5-C5H4)Fe(eta5-C5H5)}](ClO4)2, 1, (dmen=N,N-dimethylethylenediamine) or an hydroxo group in [{Cu(tmen)}2(micro-OH){micro-O2C(eta5-C5H4)Fe(eta5-C5H5)}](ClO4)2, 2 , (tmen=N,N,N'N'-tetramethylethylenediamine) are reported. Magneto-chemical studies revealed that 1 and 2 exhibit opposite superexchange interactions between the two Cu(II) paramagnetic centers: an antiferromagnetic coupling (J = -11 cm(-1)) in 1 and a ferromagnetic interaction (J = +29 cm(-1)) in 2. The results obtained from these studies suggest that the weak interactions between the Cu(II) ions and the perchlorate anions detected in the crystal structures are important to introduce significant distortions in the heterobridged [Cu2(micro-OR){micro-O2C(eta5-C5H4)Fe(eta5-C5H5)}]2+ cores of 1 and 2, which clearly affect the nature and strength of the superexchange interactions. Computational studies based on density functional theory and ab initio multiconfigurational second-order perturbation theory (CASPT2) calculations have also been performed in order to rationalize the magnetic behaviour of 1 and 2. The magneto-structural correlations for complexes containing the [Cu(micro-OR)(micro-O2CR')Cu] core are discussed, and the relevance of the out-of-plane angle of the R group with the Cu(micro-OR)Cu plane established.  相似文献   

5.
The sugar-modified Schiff base ligand benzyl 2-deoxy-2-salicylideneamino-alpha-D-glucopyranoside H 2L, prepared by condensation of salicylaldehyde and the monomeric chitosan analogue benzyl 2-deoxy-2-amino-alpha-D-glucopyranoside, reacts with copper(II) acetate to form a self-assembled, alkoxo-bridged tetranuclear homoleptic copper(II) complex [{Cu(L)}4] (4) with Cu4O4 heterocubane core. The chiral complex 4 crystallizes in the space group P2 12 12 1. The tetranuclear complex 4 is composed of two dinuclear {Cu(L)}2 entities linked by the four mu 3-bridging C-3 alkoxide oxygen atoms of the sugar backbone. The preorganization of the dimeric {Cu(L)}2 entities is enforced by strong hydrogen bonds between the phenolate oxygen atom and the C-4 hydroxy group of the two constituting chiral monomeric building blocks. Therefore the Cu4O4 core can be classified as a type I or 2 + 4 cubane. The chirality of the structure is confirmed by circular dichroism (CD) spectra, which reveal a significant dichroism associated with the copper centered transitions at around 600 nm. Temperature dependent magnetic susceptibility measurements indicate ferromagnetic exchange interactions in complex 4. Fitting of the experimental data with a two J model based on the 2 + 4 topology ( H = - J1(S1S3 + S2S4) - J2(S1 + S3)(S2 + S4)) leads to exchange coupling constants of J1 = 64 and J2 = 4 cm(-1). The observed ferromagnetic coupling can be attributed to the very small Cu-O-Cu bridging angles within the Cu2O2 core of the constituting dimeric entities, which are a result of the conformational requirements introduced by the sugar backbone. 4 is not only the first example of an alkoxo-bridged tetranuclear copper(II) complex with Cu4O4 core representing the 2 + 4 cubane class with ferromagnetic ground state but also a rare example for the class of molecules combining a ferromagnetic ground state with optical activity. The ferromagnetic S = 2 ground state of 4 is confirmed by magnetization measurements and ESR spectroscopy.  相似文献   

6.
A tetranuclear mixed ligand copper(II) complex of a pyrazole containing Schiff base and a hydroxyhexahydropyrimidylpyrazole and copper(II) and nickel(II) complexes of the Schiff base having N-donor atoms have been investigated. A 2 equiv amount of 5-methyl-3-formylpyrazole (MPA) and 2 equiv of 1,3-diamino-2-propanol (1,3-DAP) on reaction with 1 equiv of copper(II) nitrate produce an unusual tetranuclear mixed ligand complex [Cu4(L1)2(L2)2(NO3)2] (1), where H2L1 = 1,3-bis(5-methyl-3-formylpyrazolylmethinimino)propane-2-ol and HL2 = 5-methyl-3-(5-hydroxyhexahydro-2-pyrimidyl)pyrazole. In contrast, a similar reaction with nickel(II) nitrate leads to the formation of a hygroscopic intractable material. On the other hand, the reaction involving 2 equiv of MPA and 1 equiv each of 1,3-DAP and various copper(II) salts gives rise to two types of products, viz. [Cu(T3-porphyrinogen)(H2O)]X2 (X = ClO4, NO3, BF4 (2)) (T3-porphyrinogen = 1,6,11,16-tetraza-5,10,15,20-tetrahydroxy-2,7,12,17-tetramethylporphyrinogen) and [Cu(H2L1)X]X x H2O (X = Cl (3), Br (4)). The same reaction carried out with nickel(II) salts also produces two types of compounds [Ni(H2L1)(H2O)2]X2 [X = ClO4 (5), NO3 (6), BF4 (7)] and [Ni(H2L1)X2] x H2O [X = Cl (8), Br (9)]. Among the above species 1, 3, and 5 are crystallographically characterized. In 1, all four copper atoms are in distorted square pyramidal geometry with N4O chromophore around two terminal copper atoms and N5 chromophore around two inner copper atoms. In 3, the copper atom is also in distorted square pyramidal geometry with N4Cl chromophore. The nickel atom in 5 is in a distorted octahedral geometry with N4O2 chromophore, where the metal atom is slightly pulled toward one of the axial coordinated water molecules. Variable-temperature (300 to 2 K) magnetic susceptibility measurements have been carried out for complex 1. The separations between the metal centers, viz., Cu(1)...Cu(2), Cu(2)...Cu(2)A, and Cu(2)A...Cu(1)A are 3.858, 3.89, and 3.858 A, respectively. The overall magnetic behavior is consistent with strong antiferromagnetic interactions between the spin centers. The exchange coupling constants between Cu(1)...Cu(2) and Cu(2)...Cu(2A) centers have turned out to be -305.3 and -400.7 cm(-1), respectively, resulting in a S = 1/2 ground state. The complexes are further characterized by UV-vis, IR, electron paramagnetic resonance, and electrochemical studies.  相似文献   

7.
Three cubane copper(II) clusters, namely [Cu(4)(HL')4] (1), [Cu4L2(OH)2] (2), and [Cu4L2(OMe)2] (3), of two pentadentate Schiff-base ligands N,N'-(2-hydroxypropane-1,3-diyl)bis(acetylacetoneimine) (H3L') and N,N'-(2-hydroxypropane-1,3-diyl)bis(salicylaldimine) (H3L), are prepared, structurally characterized by X-ray crystallography, and their variable-temperature magnetic properties studied. Complex 1 has a metal-to-ligand stoichiometry of 1:1 and it crystallizes in the cubic space group P43n with a structure that consists of a tetranuclear core with metal centers linked by a mu(3)-alkoxo oxygen atom to form a cubic arrangement of the metal and oxygen atoms. Each ligand displays a tridentate binding mode which means that a total of eight pendant binding sites remain per cubane molecule. Complexes [Cu4L2(OH)2] (2) and [Cu4L2(OMe)2] (3) crystallize in the orthorhombic space group Pccn and have a cubane structure that is formed by the self-assembly of two {Cu2L}+ units. The variable-temperature magnetic susceptibility data in the range 300-18 K show ferromagnetic exchange interactions in the complexes. Along with the ferromagnetic exchange pathway, there is also a weak antiferromagnetic exchange between the copper centers. The theoretical fitting of the magnetic data gives the following parameters: J1 = 38.5 and J2 = -18 cm(-1) for 1 with a triplet (S = 1) ground state and quintet (S = 2) lowest excited state; J1 = 14.7 and J2 = -18.4 cm(-1) for 2 with a triplet ground state and singlet (S = 0) lowest excited state; and J1 = 33.3 and J2 = -15.6 cm(-1) for 3 with a triplet ground state and quintet lowest excited state, where J1 and J2 are two different exchange pathways in the cubane {Cu4O4} core. The crystal structures of 2 * 6 H2O and 3 * 2 H2O * THF show the presence of channels containing the lattice solvent molecules.  相似文献   

8.
A new polynucleating oxime-containing Schiff base ligand, 2-hydroxyimino- N'-[1-(2-pyridyl)ethylidene]propanohydrazone (H pop), has been synthesized and fully characterized. pH potentiometric, electrospray ionization mass spectrometric, and spectrophotometric studies of complex formation in H 2O/DMSO solution confirmed the preference for polynuclear complexes with 3d metal ions. Single-crystal X-ray diffraction analyses of [Ni 4( pop) 4(HCOO) 4].7H 2O ( 1), [Cu 4( pop-H) 4(HCOOH) 4].H 2O ( 2), and [Cu 4( pop-H) 4(H 2O) 4].9H 2O ( 3) indicated the presence of a [2 x 2] molecular grid structure in all three compounds but distinct configurations of the cores: a head-to-tail ligand arrangement with overall S 4 symmetry of the grid in the Cu (2+) complexes as opposed to a head-to-head ligand arrangement with (noncrystallographic) C 2 grid symmetry for the Ni (2+) complex. A cryomagnetic study of 3 revealed intramolecular ferromagnetic exchange between copper ions in the grid, while in 1, antiferromagnetic interactions between the metal ions were observed.  相似文献   

9.
A novel (N6O4) macrocyclic ligand (L) and its Cu(II) complexes have been prepared and characterized by elemental analysis, spectral, thermal (TG/DTG), magnetic, and conductivity measurements. Quantum chemical calculations have also been carried out at B3LYP/6-31+G(d,p) to study the structure of the ligand and one of its complexes. The results show a novel macrocyclic ligand with potential amide oxygen atom, amide and amine nitrogen atoms available for coordination. Distorted square pyramidal ([Cu(L)Cl]Cl·2.5H2O (1), [Cu(L)NO3]NO(3)·3.5H2O (2), and [Cu(L)Br]Br·3H2O (4) and octahedral ([Cu(L)(OAc)2]·5H2O (3)) geometries were proposed. The EPR data of 1, 2, and 4 indicate d1x2(-y)2 ground state of Cu(II) ion with a considerable exchange interaction. The measured cytotoxicity for L and its complexes (1, 2) against three tumor cell lines showed that coordination improves the antitumor activity of the ligand; IC50 for breast cancer cells are ≈8.5, 3, and 4 μg/mL for L and complexes (1) and (2), respectively.  相似文献   

10.
Coordination complexes of the ligand H3L [1,3-bis(3-oxo-3-phenylpropionyl)-2-hydroxy-5-methylbenzene] with Cu(II) are reported. Clusters showing various nuclearities or modes of supramolecular organization have been prepared by slightly changing the reaction conditions and have been crystallographically characterized. The reaction of H3L with one equivalent of Cu(OAc)2 in DMF yields the dinuclear complex [Cu2(HL)2(dmf)2] (1). Reaction in MeOH of H3L with an increased amount of metal, in the form of Cu(NO3)2, and excess strong base (nBu4NOH) affords the cluster [Cu8(L)2(OMe)8(NO3)2] (2). Complex 2 is a dimer of two linear [Cu4] arrays bridged by methoxide ligands, where the polynucleating ligand is fully deprotonated. The [Cu4]2 clusters are linked to each other by NO3- bridges to form one-dimensional coordination polymers. The link between [Cu8] units and their relative spatial positioning can be modified by changing the anion of the Cu(II) salt, as demonstrated by the synthesis of the cluster polymers [Cu8(L)2(OMe)8Cl2] (3) and [Cu8(L)(OMe)7.86Br2.14] (4), where only NO3- has been replaced by Cl- or Br-, respectively. Similarly, when ClO4- is used, compound [Cu8(L)2(OMe)8(ClO4)2(MeOH)4] (5) can be isolated. It contains independent [Cu8] units. A slight change in the stoichiometry of the reaction leading to 2 affords the related complex catena-[Cu4(L)(OMe)3(NO3)2(H2O)0.36] (6). This polymer contains essentially the same [Cu4] moiety as 2, albeit organized in a completely different arrangement. Each [Cu4] unit in 6 is linked by OMe- ligands to two such equivalent groups to form an infinite chain. Magnetic susceptibility measurements reveal weak antiferromagnetic exchange between Cu(II) centers in 1 (J = -0.73 cm(-1)) and strong antiferromagnetic coupling within [Cu4] chains in 2, 5, and 6 (most negative J values of -113.8 and -177.3 cm(-1) for 2 and 6, respectively).  相似文献   

11.
Three malonato-bridged copper(II) complexes of the formulas [[Cu(H2O)3][Cu(C3H2O4)2(H2O)]]n (1), [[Cu(H2O)4]2[Cu(C3H2O4)2(H2O)]] [Cu(C3H2O4)2(H2O)2][[Cu(H2O)4][Cu(C3H2O4)2(H2O)2]] (2), and [Cu(H2O)4][Cu(C3H2O4)2(H2O)2] (3) (C3H2O4 = malonate dianion) have been prepared, and the structures of the two former have been solved by X-ray diffraction methods. The structure of compound 3 was already known. Complex 1 crystallizes in the orthorhombic space group Pcab, Z = 8, with unit cell parameters of a = 10.339(1) A, b = 13.222(2) A, and c = 17.394(4) A. Complex 2 crystallizes in the monoclinic space group P2/c, Z = 4, with unit cell parameters of a = 21.100(4) A, b = 21.088(4) A, c = 14.007(2) A, and beta = 115.93(2) degrees. Complex 1 is a chain compound with a regular alternation of aquabis(malonato)copper(II) and triaquacopper(II) units developing along the z axis. The aquabis(malonato)copper(II) unit acts as a bridging ligand through two slightly different trans-carboxylato groups exhibiting an anti-syn coordination mode. The four carboxylate oxygens, in the basal plane, and the one water molecule, in the apical position, describe a distorted square pyramid around Cu1, whereas the same metal surroundings are observed around Cu2 but with three water molecules and one carboxylate oxygen building the equatorial plane and a carboxylate oxygen from another malonato filling the apical site. Complex 2 is made up of discrete mono-, di-, and trinuclear copper(II) complexes of the formulas [Cu(C3H2O4)2(H2O)2]2-, [[Cu(H2O)4] [Cu(C3H2O4)2(H2O)2]], and [[Cu(H2O)4]2[Cu(C3H2O4)2(H2O)]]2+, respectively, which coexist in a single crystal. The copper environment in the mononuclear unit is that of an elongated octahedron with four carboxylate oxygens building the equatorial plane and two water molecules assuming the axial positions. The neutral dinuclear unit contains two types of copper atoms, one that is six-coordinated, as in the mononuclear entity, and another that is distorted square pyramidal with four water molecules building the basal plane and a carboxylate oxygen in the apical position. The overall structure of this dinuclear entity is nearly identical to that of compound 3. Finally, the cationic trimer consists of an aquabis(malonato)copper(II) complex that acts as a bismonodentate ligand through two cis-carboxylato groups (anti-syn coordination mode) toward two tetraaqua-copper(II) terminal units. The environment of the copper atoms is distorted square pyramidal with four carboxylate oxygens (four water molecules) building the basal plane of the central (terminal) copper atom and a water molecule (a carboxylate oxygen) filling the axial position. The magnetic properties of 1-3 have been investigated in the temperature range 1.9-290 K. Overall, ferromagnetic behavior is observed in the three cases: two weak, alternating intrachain ferromagnetic interactions (J = 3.0 cm-1 and alpha J = 1.9 cm-1 with H = -J sigma i[S2i.S2i-1 + alpha S2i.S2i+1]) occur in 1, whereas the magnetic behavior of 2 is the sum of a magnetically isolated spin doublet and ferromagnetically coupled di- (J3 = 1.8 cm-1 from the magnetic study of the model complex 3) and trinuclear (J = 1.2 cm-1 with H = -J (S1.S2 + S1.S3) copper(II) units. The exchange pathway that accounts for the ferromagnetic coupling, through an anti-syn carboxylato bridge, is discussed in the light of the available magneto-structural data.  相似文献   

12.
Two novel heterotrimetallic octa-[Cu2CoPbCl4(L)4]2 (1) and pentanuclear [Cu2CoCd2Cl6(L)4(HOMe)2] (2) complexes have been prepared in one-pot reactions of zerovalent copper with metal chlorides in a methanol (for 1) or acetonitrile (for 2) solution of 2-(dimethylamino)ethanol (HL) in open air. The crystal structures of both compounds consist of discrete centrosymmetric heterotrimetallic molecules revealing triangular (1) and unique consecutive (2) arrangements of magnetic CuII(2)CoII cores. The complex 1 can be viewed as a dimer made up of tetranuclear Cu2CoPbCl4(L)4 units linked through the two micro(2)-Cl atoms. The molecular structure of 2 is a pentanuclear assembly containing the previously unknown Cu(micro-O)(2)Co(micro-O)(2)Cu core. The magnetic studies of 1 revealed an antiferromagnetic coupling (J(CoCu) = 37 cm(-1) and J(CuCu) = 87 cm(-1)) while 2 exhibits a weak ferromagnetic behavior (J(CoCu) = -3.2 cm(-1) and J(CuCu) = -14.2 cm(-1)). The correlations between magnetic behaviour and structures as well as synthetic features are also discussed.  相似文献   

13.
Tetranuclear copper(II) complexes containing alpha-D-glucose-1-phosphate (alpha-D-Glc-1P), [Cu4(mu-OH){mu-(alpha-D-Glc-1P)}2(bpy)4(H2O)2]X3 [X = NO3 (1a), Cl (1b), Br (1c)], and [Cu4(mu-OH){mu-(alpha-D-Glc-1P)}2(phen)4(H2O)2](NO3)3 (2) were prepared by reacting the copper(II) salt with Na2[alpha-D-Glc-1P] in the presence of diimine ancillary ligands, and the structure of 2 was characterized by X-ray crystallography to comprise four {Cu(phen)}2+ fragments connected by the two sugar phosphate dianions in 1,3-O,O' and 1,1-O mu4-bridging fashion as well as a mu-hydroxo anion. The crystal structure of 2 involves two chemically independent complex cations in which the C2 enantiomeric structure for the trapezoidal tetracopper(II) framework is switched according to the orientation of the alpha-D-glucopyranosyl moieties. Temperature-dependent magnetic susceptibility data of 1a indicated that antiferromagnetic spin coupling is operative between the two metal ions joined by the hydroxo bridge (J = -52 cm(-1)) while antiferromagnetic interaction through the Cu-O-Cu sugar phosphate bridges is weak (J = -13 cm(-1)). Complex 1a readily reacted with carboxylic acids to afford the tetranuclear copper(II) complexes, [Cu4{mu-(alpha-D-Glc-1P)}2(mu-CA)2(bpy)4](NO3)2 [CA = CH3COO (3), o-C6H4(COO)(COOH) (4)]. Reactions with m-phenylenediacetic acid [m-C6H4(CH2COOH)2] also gave the discrete tetracopper(II) cationic complex [Cu4{mu-(alpha-D-Glc-1P)}2(mu-m-C6H4(CH2COO)(CH2COOH))2(bpy)4](NO3)2 (5a) as well as the cluster polymer formulated as {[Cu4{mu-(alpha-D-Glc-1P)}2(mu-m-C6H4(CH2COO)2)(bpy)4](NO3)2}n (5b). The tetracopper structure of 1a is converted into a symmetrical rectangular core in complexes 3, 4, and 5b, where the hydroxo bridge is dissociated and, instead, two carboxylate anions bridge another pair of Cu(II) ions in a 1,1-O monodentate fashion. The similar reactions were applied to incorporate sugar acids onto the tetranuclear copper(II) centers. Reactions of 1a with delta-D-gluconolactone, D-glucuronic acid, or D-glucaric acid in dimethylformamide resulted in the formation of discrete tetracopper complexes with sugar acids, [Cu4{mu-(alpha-D-Glc-1P)}2(mu-SA)2(bpy)4](NO3)2 [SA = D-gluconate (6), D-glucuronate (7), D-glucarateH (8a)]. The structures of 6 and 7 were determined by X-ray crystallography to be almost identical with that of 3 with additional chelating coordination of the C-2 hydroxyl group of D-gluconate moieties (6) or the C-5 cyclic O atom of D-glucuronate units (7). Those with D-glucaric acid and D-lactobionic acid afforded chiral one-dimensional polymers, {[Cu4{mu-(alpha-D-Glc-1P)}2(mu-D-glucarate)(bpy)4](NO3)2}n (8b) and {[Cu4{mu-(alpha-D-Glc-1P)}2(mu-D-lactobionate)(bpy)4(H2O)2](NO3)3}n (9), respectively, in which the D-Glc-1P-bridged tetracopper(II) units are connected by sugar acid moieties through the C-1 and C-6 carboxylate O atoms in 8b and the C-1 carboxylate and C-6 alkoxy O atoms of the gluconate chain in 9. When complex 7 containing d-glucuronate moieties was heated in water, the mononuclear copper(II) complex with 2-dihydroxy malonate, [Cu(mu-O2CC(OH)2CO2)(bpy)] (10), and the dicopper(II) complex with oxalate, [Cu2(mu-C2O4)(bpy)2(H2O)2](NO3)2 (11), were obtained as a result of oxidative degradation of the carbohydrates through C-C bond cleavage reactions.  相似文献   

14.
Magnetic susceptibility and EPR studies show that trinuclear Cu(II)-pyrazolato complexes with a Cu(3)(mu3-X)2 core (X = Cl, Br) are ferromagnetically coupled: J(Cu-Cu) = +28.6 cm(-1) (X = Cl), +3.1 cm(-1) (X = Br). The orderly transition from an antiferromagnetic to a ferromagnetic exchange among the Cu centers of Cu(3)(mu3-X) complexes, X = O, OH, Cl, Br, follows the change of the Cu-X-Cu angle from 120 degrees to approximately 80 degrees. The crystal structures of [Bu4N]2"[Cu3(mu3-Br)2(mu-pz*)3Br3] (pz* = pz (1a) or 4-O2N-pz (1b), pz = pyrazolato anion, C(3)H(3)N(2)(1-)) are presented.  相似文献   

15.
Two new ligands, 2-[(bis(2-pyridylmethyl)amino)methyl]-4-methylphenol (HL) and 2-[(bis(2-pyridylmethyl)amino)methyl]-4-methyl-6-(methylthio)phenol (HSL), were synthesized and were used to prepare the trinuclear copper(II) complex {[CuSL(Cl)]2Cu}(PF6)2.H2O (1) and the corresponding binuclear complexes [Cu2(SL)2](PF6)2 (2) and [Cu2L2](PF6)2 (3). The crystal structure of 1 shows two different coordination environments: two square base pyramidal centers (Cu1 and Cu1a, related by a C2 axes), acting as ligands of a distorted square planar copper center (Cu2) by means of the sulfur atom of the SCH3 substituent and the bridging phenoxo oxygen atom of the ligand (Cu2-S = 2.294 A). Compounds 2 and 3 show two equivalent distorted square base pyramidal copper(II) centers, bridged in an axial-equatorial fashion by two phenoxo groups, thus defining an asymmetric Cu2O2 core. A long copper-sulfur distance measured in 2 (2.9261(18) A) suggests a weak bonding interaction. This interaction induces a torsion angle between the methylthio group and the phenoxo plane resulting in a dihedral angle of 41.4(5) degrees. A still larger distortion is observed in 1 with a dihedral angle of 74.0(6) degrees. DFT calculations for 1 gave a ferromagnetic exchange between first neighbors interaction, the calculated J value for this interaction being +11.7 cm-1. In addition, an antiferromagnetic exchange for 1 was obtained for the second neighbor interaction with a J value of -0.05 cm-1. The Bleaney-Bowers equation was used to fit the experimental magnetic susceptibility data for 2 and 3; the best fit was obtained with J values of +3.4 and -16.7 cm-1, respectively. DFT calculations for 2 and 3 confirm the nature and the values of the J constants obtained by the fit of the experimental data. ESR and magnetic studies on the reported compounds show a weak exchange interaction between the copper(II) centers. The low values obtained for the coupling constants can be explained in terms of a poor overlap between the magnetic orbitals, due to the axial-equatorial phenoxo bridging mode observed in these complexes.  相似文献   

16.
Syntheses, structures, and magnetic properties of novel trinuclear complexes of the same motif [M{Cu(pz2bg)2}M]4+ (M = CuII, NiII, CoII, MnII), catena-[Cu2{Cu(pz2bg)2}(Hpz)2(PhSO3)2](PhSO3)2.4H2O (2.4H2O), [Ni2{Cu(pz2bg)2}(MeOH)2(H2O)4](NO3)4 (3), [Co2{Cu(pz2bg)2}(NO3)2(EtOH)2](NO3)2 (4), and [Mn2{Cu(pz2bg)2}(NO3)4(MeCN)2] (5), which include the complex ligand [Cu(pz2bg)2] (1), are reported (Hpz = pyrazole, pz2bg- = di(pyrazolecarbimido)aminate; bispyrazolyl derivative of biguanidate). The reaction of Cu(ClO4)2.6H2O, sodium dicyanamide, Hpz, and PhSO3H.H2O (1:2:4:4) in MeOH yielded blue crystals of [Cu2(1)(Hpz)2(PhSO3)2](PhSO3)2.4H2O (2.4H2O). In 2, the tricopper(II) units, which consist of two Cu(II) ions bridged by 1, are linked by benzenesulfonate anions to form a ladder structure. Complex 1 was isolated by removing the terminal Cu(II) ions from 2 with use of Na(4)edta. Complexes 3-5 were obtained by the reaction of 1 with an excess of each M(II) ion. In 2-5, the adjoining metal ions are ferromagnetically coupled via the pz2bg- ligand with J values of +7.2(1), +7.5(1), +2.7(1), and +0.3(1) cm(-1), respectively, using a spin Hamiltonian H = -2J(S(M1)S(Cu) + S(Cu)S(M2)). The ferromagnetic interaction was attributed to the strict orthogonality of magnetic dsigma orbitals, which are controlled by the kappa3N:kappa2N bridging geometry of the pz2bg- ligands.  相似文献   

17.
The new tetranuclear carbonate complex [Cu2L)2(CO3)] x 8H2O (1 x 8H2O) (H3L = (2-(2-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine) has been obtained by two different synthetic routes and fully characterized. Recrystallization of 1 x 8H2O in methanol yields single crystals of {[(Cu2L)2(CO3)]}2 x 12H2O (1 x 6H2O), suitable for X-ray diffraction studies. The crystal structure of 1 x 6H2O shows two crystallographically different tetranuclear molecules in the asymmetric unit, 1a and 1b. Both molecules can be understood as self-assembled from two dinuclear [Cu2L]+ cations, joined by a mu4-eta(2):eta(1):eta(1) carbonate ligand. The copper atoms of each crystallographically different [(Cu2L)2(CO3)] molecule present miscellaneous coordination polyhedra: in both 1a and 1b, two metal centers are in square pyramidal environments, one displays a square planar chromophore and the other one has a geometry that can be considered as an intermediate between square pyramid and trigonal bipyramid. Magnetic studies reveal net intramolecular ferromagnetic coupling between the metal atoms. Density functional calculations allow the assignment of the different magnetic coupling constants and explain the unexpected ferromagnetic behavior, because of the presence of an unusual NCN bridging moiety and countercomplementarity of the phenoxo (or carbonate) and NCN bridges.  相似文献   

18.
A series of metal complexes were achieved from the metal-assisted solvolysis reaction of di-pyridylketone azine (dpka). The tetranuclear nickel cluster , [Ni(2)[dpk(O)(OH)][dpk(O)(OCH(3))](N(3))(2)](2), is centrosymmetric with a central core described as an edge-shared triangle core. Neighboring Ni(II) ions are alternately bridged by (micro(2)-N(3), micro(3)-O) and (micro(2)-O, micro(3)-O) double bridges. Complex , [Cu(4)[dpk(O)(OCH(3))](4)(N(3))(2)](CuCl(2))(2) contains a tetranuclear cluster and two identical [CuCl(2)]M(-) anions. The tetranuclear structure has two crystallographically imposed twofold axes, in which the four copper ions are arranged to be rhombic shape. The neighboring copper(ii) ions along the lateral are bridged by single micro(2)-O from the ligand dpk(O)(OCH(3)) and the short diagonal copper ions are bridged by two symmetric end-on azides. In dinuclear Cu(ii) complex [Cu(2)[dpka(OCH(2)CH(3))]Cl(2)](ClO(4)) (3), the metal centers are coordinated in a planar configuration and bridged by a -N-N- bridge. It is also observed that the Cl atom coordinated to one Cu(II) center is also weakly coordinated to another inversion related Cu(II) to generate a centrosymmetric dimer. The metal centers in one-dimensional polymeric Cu(ii) complex [Cu(2)[dpka(OCH(3))](N(3))(2)(ClO(4))](n) (4), however, are bridged by a -N-N- bridge and an end-to-end azide bridge, alternately. Magnetic susceptibility measurements indicate that shows ferromagnetic interaction within the tetranuclear cluster, and that displays moderately strong antiferromagnetic interaction (J = -56.7 cm(-1)) for the bis(micro-N(3)) bridge. For compound , it shows strong antiferromagnetic coupling (J = -286 cm(-1)) between the intradinuclear Cu(II) ions mediated by the single N-N bridge and negligible magnetic interactions between the adjacent dinuclear Cu(II) ions mediated by the single end-to-end azide bridge. The mechanism of the metal-assisted solvolysis reaction was also discussed.  相似文献   

19.
Copper(II) complexes (1-3) of a sterically constrained phenol-based tetradentate N(2)O(2) ligand 1,4-bis(2-hydroxy-3,5-dimethylbenzyl)piperazine (H(2)L) have been reported. The associated anions of the copper(II) ion precursors have profound influence on the stoichiometry of the products. Thus, with perchlorate ion, the product is a binuclear compound [Cu(2)L(2)] (1), while with coordinating anions viz. Cl(-) and N(3)(-), the products [Cu(3)L(2)Cl(2)(H(2)O)].1/2H(2)L (2) and [Cu(3)L(2)(N(3))(2)(CH(3)OH)].4H(2)O (3) have triangulo trinuclear composition. The syntheses, X-ray structures, and spectroscopic and magnetic properties of these complexes are described. Compound 1 has a noncentrosymmetric structure with a rectangular Cu(2)(OPh)(2) core. It appears to be a rare example of a phenolato-bridged Cu(II) dimer exhibiting ferromagnetic interactions (J = 0.93 cm(-)(1)), a behavior in agreement with the theoretical predictions but seldom observed experimentally. In compounds 2 and 3, the copper centers are triangularly disposed, and the molecules have a shape much like that of a butterfly. The terminal copper centers Cu(1) and Cu(2) in 2 and 3 have distorted square pyramidal geometry, connected to each other by a bridging chloro- (in 2) or azido ligand (in 3) in "end to end" fashion. The central copper center (Cu(3) in 2 and Cu in 3) in both the compounds has distorted square planar geometry. The separations between the metal centers, viz. Cu(1)...Cu(2), Cu(2)...Cu(3), and Cu(3)...Cu(1), are 4.826, 3.214, and 3.244 A, respectively, in 2. The corresponding distances in 3 are 5.590, 3.178, and 3.485 A, respectively. The overall magnetic behaviors in 2 and 3 are consistent with antiferromagnetic interactions between the spin centers. In 3, the exchange couplings between the terminal and central copper centers J(Cu(1))(-)(Cu) and J(Cu(2))(-)(Cu) appear to be equal (-234 cm(-)(1)), resulting in an S = (1)/(2) ground state at temperatures near or below 77 K.  相似文献   

20.
Picolyl hydrazide ligands have two potentially bridging functional groups (micro-O, micro-N-N) and consequently can exist in different coordination conformers, both of which form spin-coupled polynuclear coordination complexes, with quite different magnetic properties. The complex [Cu(2)(POAP-H)Br(3)(H(2)O)] (1) involves a micro-N-N bridge (Cu-N-N-Cu 150.6 degrees ) and exhibits quite strong antiferromagnetic coupling (-2J = 246(1) cm(-)(1)). [Cu(2)(PZOAPZ-H)Br(3)(H(2)O)(2)] (2) has two Cu(II) centers bridged by an alkoxide group with a very large Cu-O-Cu angle of 141.7 degrees but unexpectedly exhibits quite weak antiferromagnetic exchange (-2J = 91.5 cm(-)(1)). This is much weaker than anticipated, despite direct overlap of the copper magnetic orbitals. Density functional calculations have been carried out on compound 2, yielding a similar singlet-triplet splitting energy. Structural details are reported for [Cu(2)(POAP-H)Br(3)(H(2)O)] (1), [Cu(2)(PZOAPZ-H)Br(3)(H(2)O)(2)] (2), [Cu(2)(PAOPF-2H)Br(2)(DMSO)(H(2)O)].H(2)O (3), [Cu(4)(POMP-H))(4)](NO(3))(4).2H(2)O (4), and PPOCCO (5) (a picolyl hydrazide ligand with a terminal oxime group) and its mononuclear complexes [Cu(PPOCCO-H)(NO(3))] (6) and [Cu(PPOCCO-H)Cl] (7). Compound 1 (C(12)H(13)Br(3)Cu(2)N(5)O(4)) crystallizes in the monoclinic system, space group P2(1)/c, with a = 15.1465(3) A, b = 18.1848(12) A, c = 6.8557(5) A, beta = 92.751(4) degrees, and Z = 4. Compound 2 (C(10)H(13)Br(3)Cu(2)N(7)O(4)) crystallizes in the triclinic system, space group P, with a = 9.14130(1) A, b = 10.4723(1) A, c = 10.9411(1) A, alpha = 100.769(1), beta = 106.271(1) degrees, gamma = 103.447(1) degrees, and Z = 2. Compound 3 (C(23)H(22)Br(2)Cu(2)N(7)O(5.5)S) crystallizes in the monoclinic system, space group P2(1)/c, with a = 12.406(2) A, b = 22.157(3) A, c = 10.704(2) A, beta = 106.21(1) degrees, and Z = 4. Compound 4(C(52)H(48)Cu(4)N(20)O(18)) crystallizes in the monoclinic system, space group P2(1)/n, with a = 14.4439(6) A, b = 12.8079(5) A, c = 16.4240(7) A, beta = 105.199(1) degrees, and Z = 4. Compound 5 (C(15)H(14)N(4)O(2)) crystallizes in the orthorhombic system, space group Pna2(1), with a = 7.834(3) A, b = 11.797(4) A, c = 15.281(3) A, and Z = 4. Compound 6(C(15)H(13)CuN(5)O(5)) crystallizes in the monoclinic system, space group P2(1)/c, with a = 8.2818(9) A, b = 17.886(2) A, c = 10.828(1) A, beta = 92.734(2) degrees, and Z = 4. Compound 7 (C(15)H(13)CuClN(4)O(2)) crystallizes in the orthorhombic system, space group Pna2(1), with a = 7.9487(6) A, b = 14.3336(10) A, c = 13.0014(9) A, and Z = 4. Density functional calculations on PPOCCO are examined in relation to the anti-eclipsed conformational change that occurs on coordination to copper(II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号