首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 103 毫秒
1.
We elaborate the signature of the extra dimensions and brane tension in the process of phantom and massive scalar emission in the spacetime of (4 + n)-dimensional tense brane black hole. Absorption cross section, luminosity of Hawking radiation and cross section in the low-energy approximation were found. We envisage that parameter connected with the existence of a brane imprints its role in the Hawking radiation of the considered fields.  相似文献   

2.
We study compactification of extra dimensions in a theory of Dirac–Born–Infeld type gravity. We investigate the solution for Minkowski spacetime with an S 2 extra space as well as that for de Sitter spacetime (S 4) with an S 2 extra space. They are derived by the effective potential method in the presence of the magnetic flux on the extra sphere. We also consider the higher-dimensional generalization of the solutions. We find that, in a certain model, the radius of the extra space has a minimum value independent of the higher-dimensional Newton constant.  相似文献   

3.
We present new solutions of warped compactifications in the higher-dimensional gravity coupled to the scalar and the form field strengths. These solutions are constructed in the D-dimensional spacetime with matter fields, with the internal space that has a finite volume. Our solutions give explicit examples where the cosmological constant or 0-form field strength leads to a de Sitter spacetime in arbitrary dimensions.  相似文献   

4.
We consider here the dynamics of some homogeneous and isotropic cosmological models with N interacting classical scalar fields nonminimally coupled to the spacetime curvature, as an attempt to generalize some recent results obtained for one and two scalar fields. We show that a Lyapunov function can be constructed under certain conditions for a large class of models, suggesting that chaotic behavior is ruled out for them. Typical solutions tend generically to the empty de Sitter (or Minkowski) fixed points, and the previous asymptotic results obtained for the one field model remain valid. In particular, we confirm that, for large times and a vanishing cosmological constant, even in the presence of the extra scalar fields, the universe tends to an infinite diluted matter dominated era.  相似文献   

5.
6.
A Casimir piston for massless scalar fields obeying Dirichlet boundary conditions in high-dimensional spacetimes within the frame of Kaluza–Klein theory is analyzed. We derive and calculate the exact expression for the Casimir force on the piston. We also compute the Casimir force in the limit that one outer plate is moved to the extremely distant place to show that the reduced force is associated with the properties of additional spatial dimensions. The more dimensionality the spacetime has, the stronger the extra-dimension influence is. The Casimir force for the piston in the model including a third plate under the background with extra compactified dimensions always keeps attractive. Further we find that when the limit is taken the Casimir force between one plate and the piston will change to be the same form as the corresponding force for the standard system consisting of two parallel plates in the four-dimensional spacetimes if the ratio of the plate-piston distance and extra dimensions size is large enough.  相似文献   

7.
We consider the response of a uniformly accelerated monopole detector that is coupled to a superposition of an odd and an even power of a quantized, massless scalar field in flat spacetime in arbitrary dimensions. We show that, when the field is assumed to be in the Minkowski vacuum, the response of the detector is characterized by a Bose-Einstein factor in even spacetime dimensions, whereas a Bose-Einstein as well as a Fermi-Dirac factor appear in the detector response when the dimension of spacetime is odd. Moreover, we find that, it is possible to interpolate between the Bose-Einstein and the Fermi-Dirac distributions in odd spacetime dimensions by suitably adjusting the relative strengths of the detector's coupling to the odd and the even powers of the scalar field. We point out that the response of the detector is always thermal and we, finally, close by stressing the apparent nature of the appearance of the Fermi-Dirac factor in the detector response.  相似文献   

8.
A possible minimal model of the gauge–Higgs unification based on the higher dimensional spacetime M 4⊗(S 1/Z 2) and the bulk gauge symmetry SU(3) C SU(3) W U(1) X is constructed in some detail. We argue that the Weinberg angle and the electromagnetic current can be correctly identified if one introduces the extra U(1) X above and a bulk scalar triplet. The VEV of this scalar as well as the orbifold boundary conditions will break the bulk gauge symmetry down to that of the standard model. A new neutral zero-mode gauge boson Z′ exists that gains mass via this VEV. We propose a simple fermion content that is free from all the anomalies when the extra brane-localized chiral fermions are taken into account as well. The issues on recovering a standard model chiral-fermion spectrum with the masses and flavor mixing are also discussed, where we need to introduce the two other brane scalars which also contribute to the Z′ mass in the similar way as the scalar triplet. The neutrinos can get small masses via a type I seesaw mechanism. In this model, the mass of the Z′ boson and the compactification scale are very constrained being, respectively, given in the ranges: 2.7 TeV<m Z<13.6 TeV and 40 TeV<1/R<200 TeV.  相似文献   

9.
We study black hole solutions of Einstein gravity coupled to a specific global symmetry breaking Goldstone model described by an O(3) isovector scalar field in four spacetime dimensions. Our configurations are static and spherically symmetric, approaching at infinity a Minkowski spacetime background. A set of globally regular, particle-like solutions are found in the limit of vanishing event horizon radius. These configurations can be viewed as ‘regularised’ global monopoles, since their mass is finite and the spacetime geometry has no deficit angle. As an unusual feature, we notice the existence of extremal black holes in this model defined in terms of gravity and scalar fields only.  相似文献   

10.
We use Weyl transformations between the Minkowski spacetime and dS/AdS spacetime to show that one cannot well define the electrodynamics globally on the ordinary conformal compactification of the Minkowski spacetime (or dS/AdS spacetime), where the electromagnetic field has a sign factor (and thus is discountinuous) at the light cone. This problem is intuitively and clearly shown by the Penrose diagrams, from which one may find the remedy without too much difficulty. We use the Minkowski and dS spacetimes together to cover the compactified space, which in fact leads to the doubled conformal compactification. On this doubled conformal compactification, we obtain the globally well-defined electrodynamics.  相似文献   

11.
We consider an exotic "compactification" of spacetime in which there are two infinite extra dimensions, using a global string instead of a domain wall. By having a negative cosmological constant we prove the existence of a nonsingular static solution using a dynamical systems argument. A nonsingular solution also exists in the absence of a cosmological constant with a time-dependent metric. We compare and contrast this solution with the Randall-Sundrum universe and the Cohen-Kaplan spacetime and consider the options of using such a model as a realistic resolution of the hierarchy problem.  相似文献   

12.
We demonstrate that Dirac fermions self-interacting or coupled to dynamic scalar fields can emerge in the low energy sector of designed bosonic and fermionic cold atom systems. We illustrate this with two examples defined in two spacetime dimensions. The first one is the self-interacting Thirring model. The second one is a model of Dirac fermions coupled to a dynamic scalar field that gives rise to the Gross-Neveu model. The proposed cold atom experiments can be used to probe spectral or correlation properties of interacting quantum field theories thereby presenting an alternative to lattice gauge theory simulations.  相似文献   

13.
We study a nonminimal derivative coupling (NMDC) of scalar field, where the scalar field is coupled to curvature tensor in the five dimensional universal extra dimension model. We apply the Einstein equation and find its solution. First, we consider a special case of pure free scalar field without NMDC and we find that for static extradimension, the solution is equivalent to the standard cosmology with stiff matter. For a general case of pure free scalar field with NMDC, we find that the de Sitter solution is the solution of our model. For this solution, the scalar field evolves linearly in time. In the limit of small Hubble parameter, the general case give us the same solution as in the pure free scalar field. Finally, we perform a dynamical analysis to determine the stability of our model. We find that the extradimension, if it exist, can not be static and always shrinks with the expansion of four dimensional spacetime.  相似文献   

14.
We investigate the evolution dynamics of a two-level atom system interacting with the massless scalar field in a Cylindrical spacetime. We find that both the energy shifts of ground state and excited state can be separated into two parts due to the vacuum fluctuations. One is the corresponding energy shift for a rest atom in four-dimensional Minkowski space without spatial compactification, the other is just the modification of the spatial compactified periodic length. It will reveal that the influence of the presence of one spatial compactified dimension can not be neglected in Lamb shift as the relative energy level shift of an atom.  相似文献   

15.
We consider a standard model singlet which is accessible to a single extra dimension and its zero mode is localized with Gaussian profile around a point different from the origin. This zero-mode scalar is a possible candidate for the dark matter and its annihilation rate is sensitive to the compactification radius of the extra dimension, the localization width and the position. For the case of non-resonant annihilation, we estimated the dark matter scalar location around a point, at a distance ∼3× localization width from the origin, by using the annihilation rate which is based on the current relic density.  相似文献   

16.
We investigate the evolution dynamics of a two-level atom system interacting with the massless scalar field in a Cylindrical spacetime. We find that both the energy shifts of ground state and excited state can be separated into two parts due to the vacuum fluctuations. One is the corresponding energy shift for a rest atom in four-dimensional Minkowski space without spatial compactification, the other is just the modification of the spatial compactified periodic length. It will reveal that the influence of the presence of one spatial compactified dimension can not be neglected in Lamb shift as the relative energy level shift of an atom.  相似文献   

17.
Closed strings in extra compactified dimensions give rise to both Kaluza-Klein states and winding states. Since the masses of these states play a reciprocal role, it is often believed that either the lightest Kaluza-Klein states or the lightest winding states must be at or below the string scale. In this Letter, we demonstrate the contrary, showing that there exist toroidal compactifications for which all Kaluza-Klein states as well as all winding states are heavier than the string scale. Within the context of low-scale string theories, this implies that it may be possible to cross the string scale without detecting any states associated with spacetime compactification.  相似文献   

18.
Many theories of quantum gravity live in higher dimensions, and their reduction to four dimensions via mechanisms such as Kaluza–Klein compactification or brane world models have associated problems. We propose a novel mechanism of dimensional reduction via spontaneous symmetry breaking of a higher dimensional local Lorentz group to one in lower dimensions. Working in the gauge theory formulation of gravity, we couple a Higgs field to spin connections, include a potential for the field, and show that for a suitable choice of Higgs vacuum, the local Lorentz symmetry of the action gets spontaneously reduced to one in a lower dimension. Thus effectively the dimension of spacetime gets reduced by one. This provides a viable mechanism for the dimensional reduction, and may have applications in theories of quantum gravity.  相似文献   

19.
This paper investigates wave equations on spacetimes with a metric which is locally analytic in the time. We use recent results in the theory of the non-characteristic Cauchy problem to show that a solution to a wave equation vanishing in an open set vanishes in the envelope of this set, which may be considerably larger and in the case of timelike tubes may even coincide with the spacetime itself. We apply this result to the real scalar field on a globally hyperbolic spacetime and show that the field algebra of an open set and its envelope coincide. As an example, there holds an analog of Borchers' timelike tube theorem for such scalar fields and, hence, algebras associated with world lines can be explicitly given. Our result applies to cosmologically relevant spacetimes.  相似文献   

20.
We discuss the concepts of Weyl and Riemann frames in the context of metric theories of gravity and state the fact that they are completely equivalent as far as geodesic motion is concerned. We apply this result to conformally flat spacetimes and show that a new picture arises when a Riemannian spacetime is taken by means of geometrical gauge transformations into a Minkowskian flat spacetime. We find out that in the Weyl frame gravity is described by a scalar field. We give some examples of how conformally flat spacetime configurations look when viewed from the standpoint of a Weyl frame. We show that in the non-relativistic and weak field regime the Weyl scalar field may be identified with the Newtonian gravitational potential. We suggest an equation for the scalar field by varying the Einstein-Hilbert action restricted to the class of conformally-flat spacetimes. We revisit Einstein and Fokker’s interpretation of Nordstr?m scalar gravity theory and draw an analogy between this approach and the Weyl gauge formalism. We briefly take a look at two-dimensional gravity as viewed in the Weyl frame and address the question of quantizing a conformally flat spacetime by going to the Weyl frame.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号