首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 870 毫秒
1.
The electronic structures of SrMoO4 crystals containing F and F+ color centers with the lattice structure optimized are studied within the framework of the fully relativistic self-consistent Dirac–Slater theory, using a numerically discrete variational (DV-Xα) method. From the calculation, it is concluded that F and F+ color centers have donor energy level in the forbidden band. The electronic transition energies from the donor level to the bottom of the conduction band are 1.855 eV and 2.161 eV, respectively, which correspond to the 670 nm and 575 nm absorption bands. It is predicted that the 670 nm and 575 nm absorption bands originate from the F and F+ centers in SrMoO4 crystals.  相似文献   

2.
The electronic structures of BaWO4 crystals containing F-type color centers are studied within the framework of the fully relativistic self-consistent Dirac-Slater theory, using a numerically discrete variational (DV-Xα) method. It is concluded that F and F+ color centers have donor energy level in the forbidden band. The optical transition energies are 2.449 and 3.101 eV, which correspond to the 507 and 400 nm absorption bands, respectively. It is predicted that 400-550 nm absorption bands originate from the F and F+ color centers in BaWO4 crystals.  相似文献   

3.
运用相对论的密度泛函离散变分法(DV-Xα)研究了CaWO4晶体中F型色心的电子结构. 计算结果表明,F和F+心在禁带中引入了新的施主能级;分析了晶体内可能存在的光学跃迁模式,并通过过渡态的方法计算了F,F+心跃迁到导带底的能量分别为1.92eV和2.42eV. 因此,从理论上推断了F和F+心在CaWO4晶体中可能引起650nm和515nm的吸收,由此说明CaWO4晶体中650nm和515nm吸收带起源于晶体中的F和F+心. 关键词: 4晶体')" href="#">CaWO4晶体 +心')" href="#">F和F+心 DV-Xα  相似文献   

4.
Up-conversion blue emissions of trivalent thulium ions in monoclinic KGd(WO4)2 single crystals at 454 and 479 nm are reported for a single pump laser source at 688 nm. We grew thulium-doped KGd(WO4)2 single crystals at several concentrations from 0.1% to 10%. We recorded a polarized optical absorption spectrum for the 3F2+3F3 energy levels of thulium at room temperature and low temperature (6 K). From the low temperature emission spectra we determined the splitting of the 3H6 ground state. The blue emissions are characterized as a function of the dopant concentration and temperature from 10 K to room temperature. To our knowledge, this is the first time that sequential two-photon excitation process (STEP) generated blue emissions in thulium-doped single crystals with a single excitation wavelength.  相似文献   

5.
Optical absorption and luminescence spectra of ytterbium and terbium codoped BaB2O4 (β-BBO and α-BBO) crystals grown in different conditions have been studied. Low-temperature absorption peaks were observed in all samples. Features related to rare earth ions were observed in absorption and luminescence spectra. Absorption and emission in the range 860-1000 nm are caused by 2F5/22F7/2 transitions in Yb3+ ions. Emission peaks at 500, 550, 590 and 630 nm correspond to 5D47F6, 7F5, 7F4, and 7F3 transitions of Tb3+ ions, respectively. The probable reasons of variations in spectroscopic features related to Yb in BBO host are discussed. It has been shown that the replacement of Ва2+ by Yb3+ in the lattice of ВаВ2О4 results in the decrease in the symmetry of oxygen surrounding of Yb3+.  相似文献   

6.
The electronic structures of the SrWO4 crystals containing F-type color centers are studied within the framework of the fully relativistic self-consistent Dirac–Slater theory using a numerically discrete variational (DV-Xα) method. The calculations indicate that either F or F+ center has donor energy level within the forbidden band. The electronic transition energies from the two donor levels to the bottom of the conduction band are 1.82 eV and 2.28 eV corresponding to the 685 nm and 545 nm absorption bands, respectively. It is, therefore, concluded that the 545–685 nm absorption bands are originated from the F and F+ center in SrWO4 crystal respectively.  相似文献   

7.
Thin films of ZnWO4 and CdWO4 were prepared by spray pyrolysis and the structural, optical, and luminescence properties were investigated. Both ZnWO4 and CdWO4 thin films showed a broad blue-green emission band. The broad band of ZnWO4 films was centered at 495 nm (2.51 eV) consisted of three bands at 444 nm (2.80 eV), 495 nm (2.51 eV) and 540 nm (2.30 eV). The broad band of CdWO4 films at 495 nm (2.51 eV) could be decomposed to three bands at 444 nm (2.80 eV), 495 nm (2.51 eV) and 545 nm (2.28 eV). These results are consistent with emission from the WO66− molecular complex. The luminance and efficiency for ZnWO4 film at 5 kV and 57 μA/cm2 were 48 cd/m2 and 0.22 lm/w, respectively, and for CdWO4 film the values were 420 cd/m2 and 1.9 lm/w.  相似文献   

8.
Nd-doped PbWO4 crystals are grown by using the modified Bridgman method.The spectroscopic properties of the crystals are investigated.The changes of the absorption band at 350 nm are discussed for samples annealed at 740℃ and 1040℃.The radiative lifetime of the 4 F 3/2 level is calculated by using the Judd-Ofelt theory according to the absorption spectrum of 0.5 at.% Nd-doped PbWO 4 crystal.The spontaneous Raman scattering properties of the crystals are analysed.  相似文献   

9.
The absorption spectrum of 18O3 has been recorded in the 5930-6080 cm−1 region using CW-Cavity Ring Down Spectroscopy. 1888 transitions belonging to five bands have been assigned. Three of them are A-type bands: 2ν2 + 5ν3, ν1 + ν2 + 5ν3 and 5ν1 + ν3, and two bands are of B-type: 2ν1 + ν2 + 4ν3 and 4ν1 + 3ν2. Despite a complex spectral pattern perturbed by many rovibrational resonances, it has been possible to find a suitable effective Hamiltonian model reproducing all the transition wavenumbers (corresponding to 1016 energy levels) with an rms deviation of 9.5 × 10−3 cm−1. A set of 721 line intensities was determined and fitted to derive the effective transition moment parameters. This set of parameters and the experimental energy levels were used to generate a complete line list of 2795 transitions allowing to generate synthetic spectrum in good agreement with the experimental spectrum.  相似文献   

10.
The electronic structures and absorption spectra for both the perfect PbWO4 (PWO) crystal and the three types of PWO crystals, containing VPb2−, VO2+ and a pair of VPb2−-VO2+, respectively, have been calculated using CASTEP codes with the lattice structure optimized. The calculated absorption spectra indicate that the perfect PWO crystal does not occur absorption band in the visible and near-ultraviolet region. The absorption spectra of the PWO crystal containing VPb2− exhibit seven peaks located at 1.72 eV (720 nm), 2.16 eV (570 nm), 2.81 eV (440 nm), 3.01 eV (410 nm), 3.36 eV (365 nm), 3.70 eV (335 nm) and 4.0 eV (310 nm), respectively. The absorption spectra of the PWO crystal containing VO2+ occur two peaks located at 370 nm and 420 nm. The PWO crystal containing a pair of VPb2−-VO2+ does not occur absorption band in the visible and near-ultraviolet region. This leads to the conclusions that the 370 and 420 nm absorption bands are related to the existence of both VPb2− and VO2+ in the PWO crystal and the other absorption bands are related to the existence of the VPb2− in the PWO crystal. The existence of the pair of VPb2−-VO2+ has no visible effects on the optical properties. The calculated polarized optical properties are well consistent with the experimental results.  相似文献   

11.
We have studied the effect of bombardment by Cu+ and Ti+ ions with energy 30 keV on the optical absorption and luminescence of F centers in oxygen-deficient aluminum oxide. We have shown that in the induced optical absorption spectra there are six components of gaussian shape, which can be assigned to absorption bands of F+, F2, and F2+ centers. We have established that bombardment of the samples by ion beams has a weak effect on the thermoluminescence parameters in the 3.0 eV and 2.4 eV bands, while in the 3.8 eV luminescence band for F+ centers, the thermoluminescent response increases considerably. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 3, pp. 422–424, May–June, 2008.  相似文献   

12.
Nominally pure and Tm3+-doped LiCaAlF6 crystals were grown by the Czochralski technique in a reducing atmosphere. The optical properties of transparent single crystals were studied using absorption and time-resolved luminescence spectroscopy in the VUV spectral range (330-100 nm). The strongest VUV emission peaking at 60 800 cm−1 with a decay time of 5.6 μs (7 μs) at 300 K (7.4 K) was assigned to the spin-forbidden 4f115d-4f12 transition of Tm3+. The fine structure observed in the VUV emission and corresponding excitation spectra indicate intermediate strength of electron-phonon coupling in this system. The efficient excitation of f-f emissions above 72 000 cm−1, higher than the onset of f-d absorption at 63 000 cm−1, is mainly caused by the F to Tm3+ charge transfer absorption. The nature of various host-related excitation processes in the energy transfer to the Tm3+ ions is discussed.  相似文献   

13.
The Ca2.95−yDy0.05B2O6:yNa+ (0≤y≤0.20) phosphors were synthesized at 1100 °C in air by the solid-state reaction route. The as-synthesized phosphors were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), photoluminescence excitation (PLE), photoluminescence (PL) spectra and thermoluminescence (TL) spectra. The PLE spectra show the excitation peaks from 300 to 400 nm due to the 4f-4f transitions of Dy3+. This mercury-free excitation is useful for solid-state lighting and light-emitting diodes (LEDs). The emission of Dy3+ ions on 350 nm excitation was observed at 480 nm (blue) due to the 4F9/26H15/2 transitions, 575 nm (yellow) due to 4F9/26H13/2 transitions and 660 nm (red) due to weak 4F9/26H11/2 emissions. The PL results from the investigated Ca2.95−yDy0.05B2O6:yNa+ phosphors show that Dy3+ emissions increase with the increase of the Na+ codoping ions. The integral intensity of yellow to blue (Y/B) can be tuned by controlling Na+ content. By the simulation of white light, the optimal CIE value (0.328, 0.334) can be achieved when the content of Na+-codoping ions is y=0.2. The results imply that the Ca2.95−yDy0.05B2O6:yNa+ phosphors could be potentially used as white LEDs.  相似文献   

14.
Single crystals of α-Al2O3 (10×10 mm2, 0.4 mm thick) were annealed in vacuum at about 1500 °C in the ambience of boron. The OA studies on these samples showed bands at 203, 232 and 258 nm signifying that such a treatment leads to the formation of F and F+ centers in significant concentrations, these bands, however, were not found in the Al2O3 crystals processed in the similar manner in the absence of boron. The Al2O3:B samples were irradiated to different absorbed doses of 90Sr/90Y β-source and the continuous wave OSL (CW-OSL) was recorded on the samples using 470 nm blue light stimulation. These samples have shown a linear TL and CW-OSL response in the dose range of 20 mGy to 15 Gy. The minimum detectable dose, corresponding to 3σ limit of the variation of the output of the unirradiated dosimeters, was found to be 100 μGy. Irradiated samples stored in dark at room temperature for a period of two months show negligible fading. The TL and OSL sensitivities of the samples were found to be strongly dependent on process temperature and time. The TL response is marked by the absence of low temperature peak (<100 °C), unlike the case of α-Al2O3:C, implying that the boron doping does not lead to formation of shallow traps. The Al2O3:B samples show faster photoionisation cross-section as compared to α-Al2O3:C. This approach of processing of single crystal Al2O3 in the boron ambience thus represents a potential way of introducing dosimetrically pertinent defects in Al2O3 single crystals.  相似文献   

15.
Characteristics of two green emission bands, G(I) and G(II), and their origin were investigated within 0.4-300 K under photoexcitation in the 3.4-6.0 eV energy range for undoped and Mo6+-, Mo6+ , Y3+-, Mo6+, Nb5+-, Mo6+, Ce3+-, Cr6+-, La3+-, Ba2+- and Cd2+-doped PbWO4 crystals with different concentrations of impurity and intrinsic defects, grown by different methods and annealed at different conditions. The G(I) emission band, observed at low temperatures, located around 2.3-2.4 eV and excited around 3.9 eV, is usually a superposition of many closely positioned bands. The G(I) emission of undoped crystals is assumed to arise from the WO42− groups located in the crystal regions of lead-deficient structure. In Mo6+-doped crystals, this emission arises mainly from the MoO42− groups themselves. The G(II) emission band located at 2.5 eV is observed only in the crystals, containing the isolated oxygen vacancies — WO3 groups. This emission appears at T>160 K under excitation around 4.07 eV as a result of the photo-thermally stimulated disintegration of localized exciton states and subsequent recombination of the produced electron and hole centres near WO3 groups. The G(II) emission accompanies also thermally stimulated recombination processes in PbWO4 crystals above 150 K. Mainly the G(II) emission is responsible for the slow decay of the green luminescence in PbWO4 crystals.  相似文献   

16.
Mn2+-doped Zn2SiO4 phosphors had been prepared by hydrothermal method in stainless-steel autoclaves. Effects of synthesized methods, reaction temperature, ambience of heat treatment on the structure and the luminescence properties of this silicate were studied with X-ray diffraction apparatus (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM) and fluorescence spectrum. Results show that Zn2SiO4 nanocrystalline can be obtained by hydrothermal method at relatively low temperatures. The absorption pattern shows an absorption edge at about 380 nm originated from ZnO crystals and two absorption bands at about 215 and 260 nm. Mn2+-doped Zn2SiO4 has a luminescence band with the wavelength at about 522 nm under 255 nm excitation, and the luminescent intensity increases after being heat treated.  相似文献   

17.
Luminescence of the Bi3+ single and dimer centers in UV and visible ranges is studied in YAG:Bi (0.13 and 0.27 at% of Bi, respectively) single crystalline films (SCFs), grown by liquid phase epitaxy from a Bi2O3 flux. The cathodoluminescence spectra, photoluminescence decays, and time-resolved spectra are measured under the excitation by accelerated electrons and synchrotron radiation with energies of 3.7 and 12 eV, respectively. The energy level structure of the Bi3+ single and dimer centers was determined. The UV luminescence of YAG:Bi SCF in the bands that peaked at 4.045 and 3.995 eV at 300 K is caused by radiative transitions of Bi3+ single and dimer centers, respectively. The excitation spectra of UV luminescence of Bi3+ single and dimer centers consist of two dominant bands, peaked at 4.7/4.315 and 5.7/6.15 eV, related to the 1S03P1 (A band) and 1S01P1 (C-band) transitions of Bi3+ ions, respectively. The excitation bands that peaked at 7.0 and 7.09 eV are ascribed to excitons bound with the Bi3+ single and dimer centers, respectively. The visible luminescence of YAG:Bi SCF presents superposition of several wide emission bands peaking within the 3.125-2.57 eV range and is ascribed to different types of excitons localized around the Bi3+ single and dimer centers. Apart from the above mentioned A and C bands the excitation spectra of visible luminescence contain wide bands at 5.25, 5.93, and 6.85 eV ascribed to the O2−→Bi3+ and Bi3+→Bi4+ + e charge transfer transition (CTT) in Bi3+ single and dimer centers. The observed significant differences in the decay kinetics of visible luminescence under excitation in A and C bands of Bi3+ ions, CTT bands, and in the exciton and interband transitions confirm the radiative decay of different types of excitons localized around Bi3+ ions in the single and dimer centers.  相似文献   

18.
The absorption spectrum of ozone, 16O3, has been recorded in the 5980-6220 cm−1 region by high sensitivity CW-Cavity Ring Down Spectroscopy (αmin ∼ 3 × 10−10 cm−1). This study extends a first investigation with the same experimental set-up limited to the 6030-6090 cm−1 spectral region [M.-R. De Backer-Barilly, A. Barbe, Vl.G. Tyuterev, D. Romanini, B. Moeskops, A. Campargue, J. Mol. Struct. 780-781 (2006) 225-233] where the analysis of two A-type bands was reported, using FTS spectra for complementary information. The spectral extension of the recordings allows not only to enlarge considerably the observed transitions of these two bands, but more importantly, to assign four new bands: the 3ν2 + 4ν3,5ν1 + ν2 and ν1 + 2ν2 + 4ν3 B-type bands which were considered as dark in our previous report and the 3ν1 + 3ν2 + ν3 A-type band. The high mixing of the observed states approaching the dissociation limit, leads to the breakdown of the polyad structure and ambiguities in the vibrational labelling which are discussed. Finally, 1789 transitions were assigned, and a suitable Hamiltonian model allows reproducing correctly the observations for five of the six observed bands. The list of 1004 experimentally determined energy levels is provided. The determined effective Hamiltonian and transition moment operators were used to generate a list of 5338 transitions given as Supplementary Material. It is interesting to note that the d5 parameter of the effective transition moment is of great importance to account for the observed intensities of the B-type bands.  相似文献   

19.
Vacuum ultraviolet (VUV) excitation and photoluminescence (PL) properties of Sr(Y, Gd)2O4 doped with Eu3+ were studied. The excitation spectra of SrY1.9Eu0.1O4 and SrY1.0Gd0.9Eu0.1O4 had absorption in the VUV region with the absorption band edge at 149 nm, while the absorption of SrGd1.9Eu0.1O4 in the VUV region was weak, which could be due to the narrow host band gap and no efficient energy transfer occurred in the VUV region. The PL spectra of all samples exhibited the characteristic emission of Eu3+ with the red 5D0-7F2 transition (611 nm) being the most prominent group.  相似文献   

20.
Xi Chen 《Journal of luminescence》2011,131(12):2697-2702
In this work, we report preparation, characterization and luminescent mechanism of a phosphor Sr1.5Ca0.5SiO4:Eu3+,Tb3+,Eu2+ (SCS:ETE) for white-light emitting diode (W-LED)-based near-UV chip. Co-doped rare earth cations Eu3+, Tb3+ and Eu2+ as aggregated luminescent centers within the orthosilicate host in a controlled manner resulted in the white-light phosphors with tunable emission properties. Under the excitation of near-UV light (394 nm), the emission spectra of these phosphors exhibited three emission bands: one broad band in the blue area, a second band with sharp lines peaked in green (about 548 nm) and the third band in the orange-red region (588-720 nm). These bands originated from Eu2+ 5d→4f, Tb3+5D47FJ and Eu3+5D07FJ transitions, respectively, with comparable intensities, which in return resulted in white light emission. With anincrease of Tb3+ content, both broad Eu2+ emission and sharp Eu3+ emission increase. The former may be understood by the reduction mechanism due to the charge transfer process from Eu3+ to Tb3+, whereas the latter is attributed to the energy transfer process from Eu2+ to Tb3+. Tunable white-light emission resulted from the system of SCS:ETE as a result of the competition between these two processes when the Tb3+ concentration varies. It was found that the nominal composition Sr1.5Ca0.5SiO4:1.0%Eu3+, 0.07%Tb3+ is the optimal composition for single-phased white-light phosphor. The CIE chromaticity calculation demonstrated its potential as white LED-based near-UV chip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号