首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We have synthesized two cyclam‐cored dendrimers appended with dendrons of two different types by proper protection/deprotection of the cyclam unit. The resulting dendrimers contain six naphthyl and two dansyl units ( N6 D2 ) or two dansyl and six naphthyl units ( N2 D6 ) at the periphery. Their photophysical properties have been compared to those of a dendrimer containing 8 dansyl units ( D8 ) and a previously investigated dendrimer containing 8 naphthyl units ( N8 ). The absorption spectra are those expected on the basis of the number of chromophores, demonstrating that no ground state interaction takes place. The emission spectra of N2 D6 and N6 D2 show naphthalene localized and naphthalene excimer emission similar to those observed in the case of N8 , together with a much stronger dansyl emission with maximum at 525 nm. Addition of CF3SO3H to dendrimer solutions in CH3CN/CH2Cl2 1:1 (v/v) leads to protonation of the aliphatic amine units of the cyclam core at first and then of the aromatic amine of each dansyl chromophores. Cyclam can be diprotonated and this affects dansyl absorption and, most significantly, emission bands by a charge perturbation effect. Each dansyl unit is independently protonated in both dendrimers. The most interesting photophysical feature of these heterofunctionalized cyclam‐cored dendrimers is the occurrence of an intradendrimer photoinduced energy transfer from naphthyl to dansyl chromophores of two different dendrons (interdendron mechanism). The efficiency of this process is 50 % for N6 D2 and it can be increased up to 75 % upon protonation of the cyclam core and formation of N6 D2 (2H+). This arises from the fact that protonation of the amine units of the cyclam prevents formation of exciplexes upon naphthyl excitation, thus shutting down one of the deactivation processes of the fluorescent naphthyl excited state.  相似文献   

2.
We have investigated the complexation of lanthanide ions (Nd3+, Eu3+, Gd3+, Tb3+, Dy3+) with three cyclam-based ligands (cyclam = 1,4,8,11-tetraazacyclotetradecane), namely 1,4,8,11-tetrakis(naphthylmethyl)cyclam (1), and two dendrimers consisting of a cyclam core appended with four dimethoxybenzene and eight naphthyl units (2) and twelve dimethoxybenzene and sixteen naphthyl units (3). In the free ligands the fluorescence of the naphthyl units is strongly quenched by exciplex formation with the cyclam nitrogens. Complexation with the metal ions prevents exciplex formation and revives the intense naphthyl fluorescence. Fluorescence and NMR titration experiments have revealed the formation of complexes with different metal/ligand stoichiometries in the case of 1, 2 and 3. Surprisingly, the large dendrimer 3 gives rise to a stable [M(3)3]3+ species. Energy transfer from the lowest singlet and triplet excited states of the peripheral naphthyl units to the lower lying excited states of Nd3+, Eu3+, Tb3+, Dy3+ coordinated to the cyclam core does not take place.  相似文献   

3.
We have designed two novel dendrimers with cyclam cores with appended poly(amido amine) (PAMAM) dendrons, decorated at the periphery with four and eight dansyl chromophores, respectively. The photophysical properties of the dendrimers and their Nd3+ complexes have been investigated. The energy‐transfer efficiency to the lanthanide ions from these dendrimers has been studied as a function of the generation. It has been observed that an increase in the dendrimer generation as well as the number of amide units enhances the energy transfer to the lanthanide ion.  相似文献   

4.
We have investigated the complexation of the luminescent Nd(3+), Eu(3+), Gd(3+), Tb(3+), Er(3+), and Yb(3+) ions by a polylysin dendrimer containing 21 amide groups in the interior and, in the periphery, 24 chromophoric dansyl units which show an intense fluorescence band in the visible region. Most of the experiments were performed in 5:1 acetonitrile/dichloromethane solution at 298 K. On addition of the lanthanide ions to dendrimer solutions, the fluorescence of the dansyl units is quenched; in Nd(3+), Er(3+), and Yb(3+), a sensitized near-infrared emission of the lanthanide ion is observed. At low metal ion concentrations, each dendrimer hosts only one metal ion and when the hosted metal ion is Nd(3+) or Eu(3+), the fluorescence of all the 24 dansyl units of the dendrimer is quenched with unitary efficiency. Quantitative measurements were performed in a variety of experimental conditions, including protonation of the dansyl units and measurements in rigid matrix at 77 K where a sensitized Eu(3+) emission could also be observed. The results obtained have been interpreted on the basis of the energy levels and redox potentials of dendrimer and metal ions.  相似文献   

5.

We have synthesized two novel dendrimers (BG1 and BG2) consisting of a 1,4,8,11-tetraazacyclotetradecane (cyclam, 1) core with appended four dimethoxybenzene and eight benzyl units (BG1) and twelve dimethoxybenzene and sixteen benzyl units (BG2). The absorption and luminescence spectra of these compounds and the changes taking place upon protonation and Zn2+ coordination of their cyclam core have been investigated in acetonitrile-dichloromethane 1:1 v/v solution. For comparison purposes, the absorption and luminescence spectra of 1,4,8,11-tetrabenzyl-cyclam (2), and dendrons BD1 and BD2, model compounds of the branches of BG1 and BG2 respectively, have also been studied. BD1, BD2, BG1, and BG2 exhibit the absorption and emission spectra of their 1,3-dimethoxybenzene unit, but in the two dendrimers the emission intensity is quenched by the cyclam amine groups and increases upon protonation and metal coordination. In order to test if these cyclam derivatives have an antitumour effect, we have studied their action on proliferation in the human neuroblastoma TS12 cell line. Screening experiments have shown that cell proliferation was (i) strongly reduced by the tetrabenzyl substituted cyclam 2, and (ii) unaffected by cyclam and the benzo dendrimers BG1 and BG2. Antitumour screening experiments have also been performed on the tetranaphthyl substituted cyclam 3 and the naphtho-dendrimer NG2, whose photophysical properties have been previously studied. Cell proliferation came out to be moderately reduced by 3, whereas dendrimer NG2 had no effect, similar to dendrimers BG1 and BG2.  相似文献   

6.
Complexation of Zn(II) ions by cyclam cored dendrimers appended with four (G0), eight (G1) and 16 naphthyl chromophores (G2) at the periphery have been investigated in CH?CN-CH?Cl? 1?:?1 (v/v) solution by absorption and emission, ESI-mass and 1H NMR spectroscopy. The results obtained can be interpreted by the formation of complexes of 2?:?1 dendrimer to metal stoichiometry, at low metal ion concentration, and 1?:?1 complexes upon further addition of Zn(II) ions, for all the dendrimer generations. Upon addition of a molecular clip C2? consisting of two anthracene sidewalls bridged by a benzene group with two sulfate substituents in the para positions, heteroleptic complexes of general formula [GnZnC] are formed. Interestingly, in these complexes, a very efficient quenching (practically 100%) of the dendrimer naphthyl luminescence and sensitization (ca. 90%) of the clip anthracene emission take place. The complex [G2ZnC] exhibits a very high molar absorption coefficient in the UV spectral region owing to the 16 naphthyl chromophores of the dendrimer and the two anthracene units of the clip (ε = 1.7 × 10? M?1 cm?1 at 263 nm). Furthermore, the excitation energy absorbed by the naphthyl chromophores is efficiently funneled to the two anthracene units of the clip, which emits in the blue spectral region.  相似文献   

7.
We have investigated the fluorescence properties of dendrimers (Gn is the dendrimer generation number) containing four different luminophores, namely terphenyl (T), dansyl (D), stilbenyl (S), and eosin (E). In the case of T, the dendrimers contain a single p-terphenyl fluorescent unit as a core with appended sulfonimide branches of different size and n-octyl chains. In the cases of D and S, multiple fluorescent units are appended in the periphery of poly(propylene amine) dendritic structures. In the case of E, the investigated luminophore is noncovalently linked to the dendritic scaffold, but is encapsulated in cavities of a low luminescent dendrimer. Depending on the photophysical properties of the fluorescent units and the structures of the dendrimers, different mechanisms of fluorescence depolarization have been observed: (i) global rotation for GnT dendrimers; (ii) global rotation and local motions of the dansyl units at the periphery of GnD dendrimers; (iii) energy migration among stylbenyl units in G2S; and (iv) restricted motion when E is encapsulated inside a dendrimer, coupled to energy migration if the dendrimer hosts more than one eosin molecule.  相似文献   

8.
We have synthesized two dendrimers (4 and 5) consisting of a 1,4,8,11-tetraazacyclotetradecane (cyclam) core appended with four dimethoxybenzene and eight naphthyl units (4) and 12 dimethoxybenzene and 16 naphthyl units (5). The absorption and luminescence spectra of these compounds and the changes taking place upon protonation of their cyclam core have been investigated. In acetonitrile-dichloromethane 1:1 v/v solution they exhibit three types of emission bands, assigned to naphthyl localized excited states (λmax=337 nm), naphthyl excimers (λmax ca 390 nm), and naphthyl-amine exciplexes (λmax=480 nm). The tetraamine cyclam core undergoes only two protonation reactions, whose constants have been obtained by fitting the spectral changes. Protonation not only prevents exciplex formation for electronic reasons, but also causes strong nuclear rearrangements in the cyclam structure which affect excimer formation between the peripheral naphthyl units of the dendrimers.  相似文献   

9.
1,4,8,11-tetraazacyclotetradecane (cyclam), which is one of the most extensively investigated ligands in coordination chemistry, in its protonated forms, can play the role of host toward cyanide metal complexes. We have investigated the acid-driven adducts formed in acetonitrile-dichloromethane (1:1 v/v) solution by [Ru(bpy)(CN)4](2-) with 1,4,8,11-tetrakis(naphthylmethyl)cyclam (1) and a dendrimer consisting of a cyclam core appended with 12 dimethoxybenzene and 16 naphthyl units (2). [Ru(bpy)(CN)4](2-), 1, and 2 exhibit characteristic absorption and emission bands, in distinct spectral regions, that are strongly affected by addition of acid. When a solution containing equimolar amounts of [Ru(bpy)(CN)4](2-) and 1 or 2 is titrated by trifluoroacetic acid, or when [Ru(bpy)(CN)4](2-) is titrated with (1.2H)2+ or (2.2H)2+, [[Ru(bpy)(CN)4](2-).(2H+).1] or [[Ru(bpy)(CN)4](2-).(2H+).2] adducts are formed in which the fluorescence of the naphthyl units is strongly quenched by very efficient energy transfer to the metal complex, as shown by the sensitized luminescence of the latter. The [[Ru(bpy)(CN)4]2-.(2H+).1] and [[Ru(bpy)(CN)4](2-).(2H+).2] adducts can be disrupted (i) by addition of a base (1,4-diazabicyclo[2.2.2]octane), yielding the starting species [Ru(bpy)(CN)4](2-) and 1 or 2, or (ii) by further addition of triflic acid, with formation of (1.2H)2+ or (2.2H)2+ and protonated forms of [Ru(bpy)(CN)4](2-). It is shown that upon stimulation with two chemical inputs (acid and base) both [[Ru(bpy)(CN)4](2-).(2H+).1] and [[Ru(bpy)(CN)4](2-).(2H+).2] exhibit two distinct optical outputs (a naphthalene-based and a Ru(bpy)-based emission) that behave according to an XOR and an XNOR logic, respectively.  相似文献   

10.
We have investigated the formation of metal complexes between Zn2+ and two derivatives, 1 and 2, of the well-known 1,4,8,11-tetraazacyclotetradecane (cyclam) ligand. Compound 1 is 1,4,8,11-tetrakis(naphthylmethyl) cyclam, and compound 2 is a dendrimer consisting of a cyclam core with appended 12 dimethoxybenzene and 16 naphthyl units. Compound 1 exhibits an emission band with a maximum around 480 nm, assigned to the formation of exciplexes between amine and excited naphthyl units. Dendrimer 2 exhibits three types of weak emission bands, assigned to naphthyl localized excited states (lambdamax = 337 nm), naphthyl excimers (lambdamax ca. 390 nm), and naphthyl-amine exciplexes (lambdamax = 480 nm). In CH3CN-CH2Cl2 1:1 v/v, titration of ligand 1 with Zn2+ causes the disappearance of the exciplex emission and the appearance of a strong naphthyl localized fluorescence; the titration plot is linear and reaches a plateau for a 1:1 stoichiometry, showing that a highly stable [Zn(1)]2+ complex is formed. In the case of 2, titration with Zn2+ causes the disappearance of the exciplex band, with a concomitant increase in the excimer and naphthyl localized emissions; the titration plot is again linear, but in this case it reaches a plateau for a 2:1 stoichiometric ratio, showing the unexpected formation of a [Zn(2)2]2+ complex. Such an unexpected stoichiometry for the complex of the dendritic ligand has been fully confirmed by 1H NMR titrations. The results obtained show that the dendrimer branches not only do not hinder, but in fact favor coordination of cyclam to Zn2+.  相似文献   

11.
A series of amide-based molecular knots equipped selectively with fluorescent dansyl and/or pyrenesulfonyl moieties were synthesized from the readily available tris(allyloxy)knotane. UV/Vis absorption spectra, emission spectra, and the emission lifetimes of the fluorescent knotanes were investigated in chloroform at 298 K. The absorption spectra of the knotanes correspond to those of mixtures of their UV-active constituents. The fluorescence quantum yields and lifetimes of the dansyl and pyrenesulfonyl moieties are partly quenched by the knotane platform. In the KN(Da)(2)(Py) species, the fluorescent excited state of the dansyl units (lambda(max)=510 nm) lies at lower energy than the fluorescent excited state of the pyrenesulfonyl unit (lambda(max)=385 nm), the emission of which is accordingly quenched with sensitization of the dansyl fluorescence. In the KN(Ao)(2)(Da), KN(Ao)(Da)(2), and KN(Da)(3) species, the addition of acids causes the protonation of their dansyl units with a consequent decrease in the intensity of the dansyl band at 510 nm and appearance of the emission band of the protonated dansyl unit (lambda(max)=340 nm). Each dansyl unit of KN(Ao)(Da)(2) and KN(Da)(3) undergoes the independent protonation. In these incompletely protonated knotanes the fluorescence of the protonated dansyl units is partly quenched by nonprotonated ones. These processes can be quantitatively reversed upon addition of a base. In KN(Da)(2)(Py), an increase of the fluorescence of its pyrenesulfonyl group is observed when the dansyl groups are protonated. The results obtained show that the readily available and easily functionalizable amide-knotanes can be used as an interesting scaffold to obtain fluorescent switches.  相似文献   

12.
The novel N‐1‐sulfonylcytosine‐cyclam conjugates 1 and 2 conjugates are ionized by electrospray ionization mass spectrometry (ESI MS) in positive and negative modes (ES+ and ES) as singly protonated/deprotonated species or as singly or doubly charged metal complexes. Their structure and fragmentation behavior is examined by collision induced experiments. It was observed that the structure of the conjugate dictated the mode of the ionization: 1 was analyzed in ES mode while 2 in positive mode. Complexation with metal ions did not have the influence on the ionization mode. Zn2+ and Cu2+ complexes with ligand 1 followed the similar fragmentation pattern in negative ionization mode. The transformation from 2°‐amine in 1 to 3°‐amine of cyclam ring in 2 leads to the different fragmentation patterns due to the modification of the protonation priority which changed the fragmentation channels within the conjugate itself. Cu2+ ions formed complexes practically immediately, and the priority had the cyclam portion of the ligand 2 . The structure of the formed Zn2+ complexes with ligand 2 depended on the number of 3° amines within the cyclam portion of the conjugate and the ratio of the metal:ligand used. The cleavage of the cyclam ring of metal complexes is driven by the formation of the fragment that suited the coordinating demand of the metal ions and the collision energy applied. Finally, it was shown that the structure of the cyclam conjugate dictates the fragmentation reactions and not the metal ions.  相似文献   

13.
We have investigated the self‐assembly of three luminescent species in CH3CN/CH2Cl2, namely: 1) a polylysin dendrimer ( D ) composed of 21 aliphatic amide units and 24 green luminescent dansyl chromophores at the periphery, 2) a molecular clip ( C ) with two blue luminescent anthracene sidewalls and a benzene bridging unit that bears two sulfate groups in the para position, and 3) a near infrared (NIR)‐emitting Nd3+ ion. For purposes of comparison, analogous systems have also been investigated in which Gd3+ replaced Nd3+. The dendrimer and the clip can bind Nd3+ ions with formation of [ D? 2 Nd3+] and [ C? Nd3+] complexes, in which energy transfer from dansyl and, respectively, anthracene to Nd3+ ion takes place with 65 and 8 % efficiency, in air‐equilibrated solution. In the case of [ C? Nd3+], the energy‐transfer efficiency is quenched by dioxygen, thereby showing that the energy donor is the lowest triplet excited state of anthracene. In [ D? 2 Nd3+] the intrinsic emission efficiency of Nd3+ is much higher (ca. 5 times) than in [ C? Nd3+] because of a better protection of the excited lanthanide ion towards nonradiative deactivation caused by interaction with solvent molecules. By mixing solutions of D , Nd3+, and C with proper concentrations, a supramolecular structure with five components of three different species, [ D? 2 Nd3+ ? 2 C ], is formed. The excitation light absorbed by the clips is transferred with 100 % efficiency to the dansyl units of the dendrimer and then to the Nd3+ ions with 65 % efficiency either in the presence or absence of dioxygen. These results show that the [ D? 2 Nd3+ ? 2 C ] complex is able to efficiently harvest UV light by the 24 dansyl units of the dendrimer and the four anthracene chromophores of the two clips, and efficiently transfer it to the encapsulated Nd3+ ions that emit in the NIR spectral region.  相似文献   

14.
The binding properties of dioxadiaza- ([17](DBF)N2O2) and trioxadiaza- ([22](DBF)N2O3), macrocyclic ligands containing a rigid dibenzofuran group (DBF), to metal cations and structural studies of their metal complexes have been carried out. The protonation constants of these two ligands and the stability constants of their complexes with Ca2+, Ba2+, and Mn2+, Co2+, Ni2+, Cu2+, Zn2+ and Cd2+, were determined at 298.2 K in methanol-water (1:1, v/v), and at ionic strength 0.10 mol dm-3 in KNO3. The values of the protonation constants of both ligands are similar, indicating that no cavity size effect is observed. Only mononuclear complexes of these ligands with the divalent metal ions studied were found, and their stability constants are lower than expected, especially for the complexes of the macrocycle with smaller cavity size. However, the Cd2+ complex with [17](DBF)N2O2 exhibits the highest value of stability constant for the whole series of metal ions studied, indicating that this ligand reveals a remarkable selectivity for cadmium(II) in the presence of all the metal ions studied, except copper(II), indicating that this ligand reveals a remarkable selectivity for cadmium(II) in the presence of the mentioned metal ions. The crystal structures of H2[17](DBF)N2O3(2+) (diprotonated form of the ligand) and of its cadmium complex were determined by X-ray diffraction. The Cd2+ ion fits exactly inside the macrocyclic cavity exhibiting coordination number eight by coordination to all the donor atoms of the ligand, and additionally to two oxygen atoms from one nitrate anion and one oxygen atom from a water molecule. The nickel(II) and copper(II) complexes with the two ligands were further studied by UV-vis-NIR and the copper(II) complexes also by EPR spectroscopic techniques in solution indicating square-pyramidal structures and suggesting that only one nitrogen and oxygen donors of the ligands are bound to the metal. However an additional weak interaction of the second nitrogen cannot be ruled out.  相似文献   

15.
Electrospray mass spectrometry (ESMS) and collision-induced dissociation (CID) methodologies have been developed for the structural characterization of ginseng saponins (ginsenosides). Ginsenosides are terpene glycosides containing a triterpene core to which one to four sugars may be attached. They are neutral molecules which readily form molecular metal-attachment ions in positive ion ESMS experiments. In the presence of ammonium hydroxide intense deprotonated ions are generated. Both positive and negative ion ESMS experiments were found to be useful for molecular mass and structure determination of ten ginsenoside standards. Negative ion experiments made possible the determination of the molecular mass of each ginsenoside standard, the mass of the triterpene core and the masses and sequences of the sugar residues. Positive ion ESMS experiments with the alkali metal cations Li+ or Na+ and the transition metal cations Co2+, Ni2+ and Zn2+ were also useful in determining molecular masses. These alkali and transition metal cations form strongly bonded attachment ions with the ginsenosides. As a result, the CID mass spectra of the metal attachment ions show a variety of (structure characteristic) fragmentations. These experiments can be used to determine the identity of the triterpene core, the types and attachment points of sugars to the core and the nature of the O-glycosidic linkages in the appended disaccharides. Combining the results from the negative and positive ion experiments provides a promising approach to the structure analysis of this class of natural products.  相似文献   

16.
Self-assembled monolayers (SAMs) of bis-thioctic ester derivatives of oligoethylene glycols were prepared. When the number of (-CH2-CH2-O-)n units in these podands was either five or six, the corresponding SAMs showed ion binding properties and selectivities similar to those exhibited by 15-crown-5 or 18-crown-6 in aqueous solution, respectively. Impedance data for the SAMs as a function of metal ion concentrations were fitted by using a Langmuir isotherm to determine the association constants (Ka) with the different ions. The SAM derived from the n = 5 compound is selective for Na+ while that with n = 6 is selective for K+. Results presented here confirm the formation of ion recognition domains during self-assembly of acyclic polyethylene glycol derivatives on gold surfaces; this suggests that surface-confined pseudocrown ether structures are formed.  相似文献   

17.
Electrospray ionization tandem mass spectrometry (ESI-MS/MS) was used to probe the binding of silver ions and reduced silver species with polyamidoamine generation 1 amine-terminated (PAMAMG1NH2) and generation 2 hydroxyl-terminated (PAMAMG2OH) dendrimers. At Ag(+)/PAMAMG2OH molar ratios of 1, 2:1 and low abundance 3:1 complexes emerge. Similar results were observed for PAMAMG1NH2. The collisional activated dissociation (CAD) patterns of the dendrimer ions are characterized by losses of amidoamine branches resulting largely from hydrogen migration and cleavage reactions. Ag+/dendrimer complexes are characterized by the loss of a dendrimer branch from the complex, with the silver ion remaining bound to a dendrimer fragment. When the Ag+-bound dendrimer complexes are reduced by hydrazine, low abundance complexes, whose m/z values are consistent with ones containing zerovalent silver species, are observed in the mass spectra. Complexes with three silver atoms are observed in the spectrum containing PAMAMG1NH2, and complexes with four and five silver atoms are observed with PAMAMG2OH. The CAD fragmentation patterns of the complexes formed after the silver reduction are different than those observed for complexes containing one silver ion and are characterized by the ejection of all silver species, possibly as a cluster, leaving the intact dendrimer ion. Experiments with Cu+, Cu2+, and Pt2+ binding to PAMAMG2OH were also done, but reduced metal clusters were not observed in the mass spectra after the addition of hydrazine.  相似文献   

18.
19.
A second generation poly(propylene amine) dendrimer functionalized at the periphery with eight E-stilbene and eight 4-tert-butylbenzenesulfonyl units has been prepared. The absorption spectrum, fluorescence spectrum and decay, E<==>Z photoisomerization, and photocyclization of the Z-isomer of the stilbene units have been investigated in air equilibrated acetonitrile solutions. For comparison purposes, a reference compound of the peripheral dendrimer units, namely 4-tert-butyl-N-propyl-N-(4-styryl-benzyl)-benzenesulfonamide, has also been studied. The quantum yield of the E-->Z photoisomerization reaction (0.30) and the fluorescence quantum yield of the E isomer (0.014) are substantially smaller for the units appended to the dendrimer compared to those of the reference compound (0.50 and 0.046, respectively). The presence of a red tail and the biexponential decay of the emission band of the dendrimer indicate formation of excimers between the stilbene units appended at the poly(propylene amine) dendritic structure. Under the experimental conditions used (lambda(exc)= 313 nm), a Z/E photostationary state (around 9 : 1 for both reference compound and dendrimer ) is reached in the time scale of minutes. On continuing irradiation, other photoreactions take place in the time scale of hours: the stilbene moiety of compound undergoes photocyclization to phenanthrene (quantum yield 0.015), whereas in dendrimer photocyclization to phenanthrene is accompanied by other processes, including a photoreaction involving the internal amine groups.  相似文献   

20.
Two newly synthesized pyrenylcyclam dendrons (1 and 2) exhibit a new emission band centered at 450 nm when coordinated with copper triflate. Observed fluorescence shifts induced by coordinative metalation indicate an unusual intramolecular charge transfer from a pyrenyl excited state to the coordinated metal ion that competes with pyrene excimer formation. This interaction likely proceeds by photoexcitation of pi-complex of the appended arene, followed by intramolecular charge transfer within the dendritic 1:1 cyclam/metal complex, effecting reduction of the bound Cu(II) metal ion. The appended dendritic groups not only decrease the equilibrium binding constant with Cu(II) but also participate in a new excited-state pathway as an alternative to energy-dissipative excimer formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号